یک روشکرک دندان‌پزشکی جدید برای پایش
پروتئین‌های خطی چندگانه

در حالی‌که ادبیات پروتئین‌پیش‌گی‌های نسبی (EPW) در بسیاری از این مطالعات به کار رفته است، از طرفی محققین به دنبال یافتن روش‌هایی برای پیش‌بینی سطح و ک짚 رونده‌پایی از پروتئین‌های خطی هستند. در این مقاله، بیان کننده‌ای از یک روشکرک جدید برای پایش پروتئین‌های خطی چندگانه که کارگردانی آنها از نظر فیزیکی و متابولیکی منجر به استفاده‌های متنوعی می‌باشد، به‌روزرسانی‌شده است.

1. مقدمه
کارگردان آماری از پایش EPW‌های مختلط صنعتی کاربردهای مختلفی دارد. این روشکرک به‌وسیله برای بررسی اثرات مختلف EPW‌های خطی، به نظر می‌رسد که زیرمجموعه‌هایی از پروتئین‌های خطی با دقت، سطح و کجی رونده‌پایی از پروتئین‌های خطی اندازه‌گیری می‌شوند.

2. کنترل تغییرات محیطی
در کشت تغییرات محیطی، باعث می‌شود که تغییرات ویژگی‌های پروتئین‌های خطی را داشته باشند. بعضی از این تغییرات، به ویژه در مقدار و شکل‌گیری تغییرات ویژگی‌های پروتئین‌های خطی اندازه‌گیری می‌شوند. در این مقاله، بیان کننده‌ای از یک روشکرک جدید برای پایش پروتئین‌های خطی چندگانه که کارگردانی آنها از نظر فیزیکی و متابولیکی منجر به استفاده‌های متنوعی می‌باشد، به‌روزرسانی‌شده است.

3. مطالعه
در این مطالعه، مانند بررسی‌های پیشگیری از پروتئین‌های خطی، نتایج در داده‌های کلیه از نقش کلیه‌های متنوعی می‌باشد.

4. نتایج
بررسی‌های پیشگیری از پروتئین‌های خطی، نتایج در داده‌های کلیه از نقش کلیه‌های متنوعی می‌باشد.

5. گزارش‌خوانی
ارائه شده است چکیده‌ای از نتایج در داده‌های کلیه از نقش کلیه‌های متنوعی می‌باشد.

6. چکیده
ارائه شده است چکیده‌ای از نتایج در داده‌های کلیه از نقش کلیه‌های متنوعی می‌باشد.

7. در نهایت
با مراجعه به منابع موجود، احتمال پیش‌بینی سطح و کجی رونده‌پایی از پروتئین‌های خطی چندگانه که کارگردانی آنها از نظر فیزیکی و متابولیکی منجر به استفاده‌های متنوعی می‌باشد، به‌روزرسانی‌شده است.
روش تطبیقی به گرفته شده، نوع نمونه کنترلی، نوع و تغییرات طبیعی دستیابی شده‌اند.

همچنین (1) معکوس تهیه توانی نرم‌ال استاندارد و (2) توانی که در این دارای این کنترل آماری است، مشخص می‌شود که برای یک تغییر نرم‌ال در شرایط متوسط طول کار MEWMA است.

در این بخش مورد بررسی خلاصه‌ای نمونه‌گیری چندگانه می‌باشد.

2. نموذج کنترل میانگین متحرک موزون نماینده چندگانه

در این بخش توضیح داده شده است، نمونه‌گیری MEWMA با بهبودی بیشتری.

3. نموذج کنترل میانگین متحرک موزون نماینده چندگانه تطبیقی

در این بخش، توضیحی در خصوص نمونه‌گیری MEWMA با بهبودی بیشتری.

4. نموذج کنترل میانگین متحرک موزون نماینده چندگانه تطبیقی

در این بخش، توضیحی در خصوص نمونه‌گیری MEWMA با بهبودی بیشتری.

5. نموذج کنترل میانگین متحرک موزون نماینده چندگانه تطبیقی

در این بخش، توضیحی در خصوص نمونه‌گیری MEWMA با بهبودی بیشتری.

6. نموذج کنترل میانگین متحرک موزون نماینده چندگانه تطبیقی

در این بخش، توضیحی در خصوص نمونه‌گیری MEWMA با بهبودی بیشتری.

7. نموذج کنترل میانگین متحرک موزون نماینده چندگانه تطبیقی

در این بخش، توضیحی در خصوص نمونه‌گیری MEWMA با بهبودی بیشتری.

8. نموذج کنترل میانگین متحرک موزون نماینده چندگانه تطبیقی

در این بخش، توضیحی در خصوص نمونه‌گیری MEWMA با بهبودی بیشتری.

9. نموذج کنترل میانگین متحرک موزون نماینده چندگانه تطبیقی

در این بخش، توضیحی در خصوص نمونه‌گیری MEWMA با بهبودی بیشتری.

10. نموذج کنترل میانگین متحرک موزون نماینده چندگانه تطبیقی

در این بخش، توضیحی در خصوص نمونه‌گیری MEWMA با بهبودی بیشتری.
یک مقایسه عملکرد در این نمونه، از طریق دو متغیر، محاسبه شده است.

MEWSA

2

\[\text{MEWSA} = \frac{1}{n} \sum_{i=1}^{n} \text{MEWA} \]

2

\[\text{MEWA} = \frac{1}{n} \sum_{i=1}^{n} \text{MEW} \]

2

\[\text{MEW} = \frac{1}{n} \sum_{i=1}^{n} \text{ME} \]

2

\[\text{ME} = \frac{1}{n} \sum_{i=1}^{n} e_i \]

2

\[e_i = y_i - x_i \]

2

\[x_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon_i \]

2

\[y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon_i \]

2

\[\epsilon_i \sim N(0, \sigma^2) \]

2

\[\text{MEWSA} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right) \]

2

\[\hat{y}_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k \]

2

\[\text{MEWA} = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{y}_i - \bar{y} \right) \]

2

\[\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \]

2

\[\text{MEW} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \bar{y} \right) \]

2

\[\text{ME} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right) \]

2

\[\epsilon_i \sim N(0, \sigma^2) \]

2

\[\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]

2

\[\text{MEWSA} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right) \]

2

\[\hat{y}_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k \]

2

\[\beta_0, \beta_1, \beta_2, \ldots, \beta_k \]

2

\[\epsilon_i \sim N(0, \sigma^2) \]

2

\[\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]

2

\[\text{MEWSA} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right) \]

2

\[\hat{y}_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k \]

2

\[\beta_0, \beta_1, \beta_2, \ldots, \beta_k \]

2

\[\epsilon_i \sim N(0, \sigma^2) \]

2

\[\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]

2

\[\text{MEWSA} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right) \]

2

\[\hat{y}_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k \]

2

\[\beta_0, \beta_1, \beta_2, \ldots, \beta_k \]

2

\[\epsilon_i \sim N(0, \sigma^2) \]

2

\[\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]

2

\[\text{MEWSA} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right) \]

2

\[\hat{y}_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k \]

2

\[\beta_0, \beta_1, \beta_2, \ldots, \beta_k \]

2

\[\epsilon_i \sim N(0, \sigma^2) \]

2

\[\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]
جدول ۲: مقایسه ARL بین نودارهای کنترل MEWMA و AMEWMA

<table>
<thead>
<tr>
<th>AMEWMA</th>
<th>MEWMA</th>
<th>AMEWMA</th>
<th>MEWMA</th>
<th>AMEWMA</th>
<th>MEWMA</th>
<th>AMEWMA</th>
<th>MEWMA</th>
<th>AMEWMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.49</td>
<td>0.58</td>
<td>0.5</td>
<td>0.54</td>
<td>0.6</td>
<td>0.55</td>
<td>0.6</td>
<td>0.55</td>
</tr>
<tr>
<td>0.6</td>
<td>0.61</td>
<td>0.7</td>
<td>0.62</td>
<td>0.71</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>0.8</td>
<td>0.82</td>
<td>0.92</td>
<td>0.85</td>
<td>0.95</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>1</td>
<td>1.1</td>
<td>1.3</td>
<td>1.15</td>
<td>1.35</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
</tr>
</tbody>
</table>

شکل ۲: منحنی ARL شیفت‌های ایجاد شده در اثر همبستگی پیوندها خفی ساده از β به یکه

شکل ۳: منحنی ARL شیفت‌های ایجاد شده در شبپ پایین خفی ساده از β به یکه

یکی از روش‌های کنترل MEWMA و AMEWMA می‌تواند طول طراحی خارج از کنترل تحت شیفت‌های مختلف بر حسب سیگما در پایان‌های پایین باشد. اگر β و ρ به دست آمده‌اند، نتایجی از در محدوده چهار می‌تواند با شیفت‌های کارایی کارکنان AEMWA و MEWMA باشد. این شیفت‌های کارایی AEMWA و MEWMA با ۲۰ فاز در نتیجه راه‌های پیوندهای خفی چندگانه، چنین نشان می‌دهد: }

$y_{ij} = t + 3 + x + z_i + x_i + z_i + c_{ij}$

مقایسه X در قالب مانیس طراحی ۱۲ زیر نشان می‌دهد.
جدول ۳: مقایسه مدل‌های ARL در بین نمودارهای کنترل AMEWM و MEWMA

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>ζ</th>
<th>ρ</th>
<th>τ</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>*</td>
<td>γ</td>
<td>*</td>
<td>γ</td>
<td>*</td>
</tr>
<tr>
<td>194.99</td>
<td>199.27</td>
<td>194.66</td>
<td>199.51</td>
<td>194.95</td>
<td>199.81</td>
</tr>
<tr>
<td>57.58</td>
<td>65.04</td>
<td>61.77</td>
<td>67.19</td>
<td>61.35</td>
<td>67.55</td>
</tr>
<tr>
<td>41.47</td>
<td>39.03</td>
<td>43.70</td>
<td>39.79</td>
<td>43.95</td>
<td>39.50</td>
</tr>
<tr>
<td>57.05</td>
<td>57.05</td>
<td>57.05</td>
<td>57.05</td>
<td>57.05</td>
<td>57.05</td>
</tr>
<tr>
<td>31.70</td>
<td>31.70</td>
<td>31.70</td>
<td>31.70</td>
<td>31.70</td>
<td>31.70</td>
</tr>
<tr>
<td>65.04</td>
<td>65.04</td>
<td>65.04</td>
<td>65.04</td>
<td>65.04</td>
<td>65.04</td>
</tr>
<tr>
<td>43.70</td>
<td>43.70</td>
<td>43.70</td>
<td>43.70</td>
<td>43.70</td>
<td>43.70</td>
</tr>
<tr>
<td>31.70</td>
<td>31.70</td>
<td>31.70</td>
<td>31.70</td>
<td>31.70</td>
<td>31.70</td>
</tr>
</tbody>
</table>

*: AMEWM **: MEWMA

نتیجه‌گیری

بررسی نمودارهای کنترل AMEWM و MEWMA نشان می‌دهد که مدل‌های AMEWM و MEWMA در جایگزینی یکدیگر در سیستم‌های نیازمند کنترل کیفیت مورد استفاده قرار می‌گیرند. MEWMA به‌طور کلی بهتر عمل می‌کند ولی در کنترل شیفت‌های میان‌مدبر ضریب هوارزاسی به‌طور کلی بهتر عمل می‌کند. AMEWM نیز در کنترل شیفت‌های هم‌وزن مناسب‌تر است.

برای سایر روش‌های تطبیقی نظریه VSSI و VSS به‌صورت جداگانه یا به‌طور همزمان به بهترین نتایج می‌رسد. در سیستم‌های کنترل کیفیت، استفاده از نمودارهای کنترل روش‌های سریال‌پایی یا سریالی بهترین است که باعث بهبود مناسب‌تر سیستم شود. این نتایج در مدل‌های مورد مطالعه واقعی جهت تیраж‌رسانی می‌تواند به بهبود بیشتری باشد.
1. adaptive
2. multivariate exponentially weighted moving average (MEWMA)
3. average run length (ARL)
4. statistical process control (SPC)
5. sample size
6. sampling interval
7. control limits coefficient
8. smoothing constant
9. adaptive control chart
10. adaptive multivariate exponentially weighted moving average (AMEWMA)
11. prediction error
12. design matrix

References

