1.Maleki, M., Bidram, H. and Wraith, D., 2022. Robust clustering of COVID-19 cases across US counties using mixtures of asymmetric time series models with time varying and freely indexed covariates. Journal of Applied Statistics, 50(11), pp. 2648-2662.
https://doi.org/10.1080/02664763.2021.2019688.
3. Dau, H.A., Begum, N. and Keogh, E., 2016. Semisupervision dramatically improves time series clustering
under dynamic time warping. Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, pp. 999-1008.
4. Alhusain, L. and Hafez, A.M., 2017. Cluster ensemble based on Random Forests for genetic data. BioData Mining, 10(1), p. 37. https://doi.org/10.1186/s13040-017-0156-2.
5. Ma, R. and Angryk, R., 2017. Distance and density clustering for time series data. 2017 IEEE International
Conference on Data Mining Workshops (ICDMW), IEEE, pp. 25-32. 39
6. Mehrmolaei, S. and Keyvanpour, M.R., 2018. A comparative study on weighting-based clustering techniques:
Time series data. 2018 8th Conference of AI & Robotics and 10th RoboCup Iranopen International Symposium
(IRANOPEN), IEEE, pp. 65-72.
7. Tavakoli, N., Siami-Namini, S., Adl Khanghah, M., Mirza Soltani, F. and Siami Namin, A., 2020. An autoencoder-based deep learning approach for clustering time series data. SN Applied Sciences, 2(1), pp. 1-25.
https://doi.org/10.1007/s42452-020-2584-8.
8. Lafabregue, B., Weber, J., Gancarski, P. and Forestier, G., 2022. End-to-end deep representation learning for
time series clustering: A comparative study. Data Mining and Knowledge Discovery, 36(1), pp. 29-81.
https://doi.org/10.1007/s10618-021-00796-y.
9. Zolhavarieh, S., Aghabozorgi, S. and Teh, Y.W., 2014. A review of subsequence time series clustering. The Scienti c World Journal, 2014(1), pp. 1-19.
https://doi.org/10.1155/2014/312521.
10. Ralanamahatana, C.A., Lin, J., Gunopulos, D., Keogh, E., Vlachos, M. and Das, G., 2005. Mining Time Series
Data. Data Mining and Knowledge Discovery Handbook: Springer pp. 1069-1103. Springer, US.
11. Kamalzadeh, H., Ahmadi, A. and Mansour, S., 2020. Clustering time-series by a novel slope-based similarity
measure considering particle swarm optimization. Applied Soft Computing, 96(1), p. 106701.
https://doi.org/10.1016/j.asoc.2020.106701.
13. Luczak, M., 2016. Hierarchical clustering of time series data with parametric derivative dynamic time warping.
Expert Systems with Applications, 62(1), pp. 116-130.
https://doi.org/10.1016/j.eswa.2016.06.012.
14. 14. Rokach, L. and Maimon, O., 2005. Clustering Methods. Data Mining and Knowledge Discovery Handbook:
Springer, pp. 321-352.
15. Rahim Khan, M.A. and Zakarya, M., 2013. Longest common subsequence based algorithm for measuring
similarity between time series: A new approach. World Applied Sciences Journal, 24(9), pp. 1192-1198.
https://doi.org/10.11648/j.ajdmkd.20190401.16.
16. Wang, X., Yu, F., Pedrycz, W. and Wang, J., 2019. Hierarchical clustering of unequal-length time series with
area-based shape distance. Soft Computing, 23(15), pp. 6331-6343.
https://doi.org/10.1007/s00500-018-3287-6.
17. Chu, K.K.W. and Wong, M.H., 1999. Fast time-series searching with scaling and shifting. Proceedings of the
Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 237-248.
18. Gharghabi, S., Imani, S., Bagnall, A., Darvishzadeh, A. and Keogh, E., 2018. Matrix pro le xii: Mpdist: A
novel time series distance measure to allow data mining in more challenging scenarios. 2018 IEEE International
Conference on Data Mining (ICDM), IEEE, pp. 965-970.
20. Hong, D., Gu, Q. and Whitehouse, K., 2017. High-dimensional time series clustering via crosspredictability,
Arti cial Intelligence and Statistics, PMLR, pp. 642-651.
21. Gorecki, T., 2018. Classi cation of time series using combination of DTW and LCSS dissimilarity measures. Communications in Statistics- Simulation and Computation, 47(1), pp. 263-276.
https://doi.org/10.1080/03610918.2017.1280829.
22. Guijo-Rubio, D., Durran-Rosal, A.M., Gutierrez, P.A., Troncoso, A. and Hervás-Martínez, C.,2020. Time-series clustering based on the characterization of segment typologies. IEEE Transactions on Cybernetics, 51(11), pp. 5409-5422.
https://doi.org/10.1109/tcyb.2019.2962584.
23. Aghabozorgi, S., Ying Wah, T., Herawan, T., Jalab, H.A., Shaygan, M.A. and Jalali, A., 2014. A hybrid algorithm
for clustering of time series data based on affinity search technique. The Scienti c World Journal, 2014(1), pp. 1-12.
https://doi.org/10.1155/2014/562194.
25. Manakova, N. and Tkachenko, V., 2020. Two-stage timeseries clustering approach under reducing time cost requirement. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications
and Computer Engineering (TCSET), IEEE, pp. 653-658.
26. Hyndman, R.J., Wang, E. and Laptev, N., 2015. Largescale unusual time series detection, 2015 IEEE International
Conference on Data Mining Workshop (ICDMW), IEEE, pp. 1616-1619.
27. Zou, Y., Donner, R.V., Marwan, N., Donges, J.F. and Kurths, J., 2019. Complex network approaches to nonlinear
time series analysis. Physics Reports, 787(1), pp. 1-97.
https://doi.org/10.1016/j.physrep.2018.10.005.
28. Silva, V.F., Silva, M.E., Ribeiro, P. and Silva, F., 2021. Time series analysis via network science: Concepts and algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(3), p. e1404.
https://doi.org/10.1002/widm.1404.
30. Bonacina, F., Miele, E.S. and Corsini, A., 2020. Time series clustering: A complex network-based approach for
feature selection in multi-sensor data. Modelling, 1(1), pp. 1-21.
https://doi.org/10.3390/modelling1010001.
32. Keogh, E.J. and Pazzani, M.J., 1998. An enhanced representation of time series which allows fast and accurate
classi cation, Clustering and Relevance Feedback, Kdd, 98, pp. 239-243.
33. Keogh, E., Chu, S., Hart, D. and Pazzani, M., 2004. Segmenting time series: A survey and novel approach. Data
Mining in Time Series Databases: World Scienti c, pp.1-21.
34. Faloutsos, C., Ranganathan, M. and Manolopoulos, Y., 1994. Fast subsequence matching in time-series
databases. ACM Sigmod Record, 23(2), pp. 419-429.
https://doi.org/10.1145/191843.191925.
37. Paterson, M. and Danclk, V., 1994. Longest common subsequences, International Symposium on Mathematical
Foundations of Computer Science, pp. 127-142.
38. Lin, R., King-lp, A. and Shim, H.S.S.K., 1995. Fast similaritysearch in the presence of noise, scaling, and translation
in time-series databases, Proceeding of the 21th International Conference on Very Large Data Bases, Citeseer, pp. 490-501.
39. Vlachos, M., Kollios, G. and Gunopulos, D., 2002. Discovering similar multidimensional trajectories, Proceedings
18th International Conference on Data Engineering, pp. 673-684.
42. Liu, Y., Li, Z., Xiong, H., Gao, X. and Wu, J., 2010. Understanding of internal clustering validation measures,
2010 IEEE International Conference on Data Mining, IEEE, pp. 911-916.
45. Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., Ratanamahatana, C.A., and Keogh, E., 2019. The UCR time series archive. IEEE/CAA Journal of Automatica Sinica, 6(6), pp. 1293-1305.
https://doi.org/10.1109/jas.2019.1911747.
46. Demsar, J., 2006. Statistical comparisons of classi ersover multiple data sets. The Journal of Machine Learning
Research, 7, pp. 1-30.
47. Yang, J. and Leskovec, J., 2011. Patterns of temporal variation in online media, Proceedings of the Fourth
ACM International Conference on Web Search and Data Mining, pp. 177-186.