بررسی سودآوری معاملات زوجی با استفاده از الگوریتم مبتنی بر یادگیری‌ماشین و الگوریتم ژنتیک در بورس اوراق بهادار تهران

نوع مقاله : پژوهشی

نویسندگان

دانشکده‌ی مهندسی صنایع و سیستم‌ها، دانشگاه تربیت مدرس

چکیده

در این مقاله، به مسئله‌ی چگونگی یافتن زوج‌های سودآور با اعمال محدودیت خودکار در فضای جستجوی زوج دارای‌ها با استفاده از تکنیک‌های یادگیری ماشین و ادغام یک الگوریتم یادگیری بدون نظارت، O‌P‌T‌I‌C‌S، به فرایند شناسایی و انتخاب زوج‌ها در معاملات زوجی پرداخته شده است. همچنین، جهت بهینه‌سازی سبد متشکل از زوج دارایی‌ها و تخصیص سرمایه بهینه به آنها، از الگوریتم مبتنی بر ژنتیک با هدف افزایش نسبت شارپ استفاده شده است. عملکرد تکنیک پیشنهادی برای خوشه‌بندی خودکار، نسبت به‌روش‌های متداول جستجوی زوج دارایی‌ها توسط سرمایه‌گذاران بهتر بوده و منجر به دستیابی به میانگین نرخ بازگشت سرمایه و نسبت شارپ بالاتری برای سبد در معاملات با استفاده از زوج‌های منتخب از خوشه‌ها شده است. این معیارهای ارزیابی محاسبه شده برای سبد، بعد از به‌کارگیری الگوریتم بهینه‌سازی ژنتیک دوهدفه ارتقا یافته‌اند. این مطالعه با استفاده از داده‌های قیمتی درونروزی گروهی از سهام‌های بورس اوراق بهادار تهران بین سال‌های ۲۰۱۵ تا ۲۰۲۰ و در نظر گرفتن هزینه‌های معاملاتی شبیه‌سازی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

I‌N‌V‌E‌S‌T‌I‌G‌A‌T‌I‌N‌G T‌H‌E P‌R‌O‌F‌I‌T‌A‌B‌I‌L‌I‌T‌Y O‌F P‌A‌I‌R‌S T‌R‌A‌D‌I‌N‌G U‌S‌I‌N‌G M‌A‌C‌H‌I‌N‌E L‌E‌A‌R‌N‌I‌N‌G A‌N‌D G‌E‌N‌E‌T‌I‌C B‌A‌S‌E‌D A‌L‌G‌O‌R‌I‌T‌H‌M‌S I‌N T‌E‌H‌R‌A‌N S‌T‌O‌C‌K E‌X‌C‌H‌A‌N‌G‌E

نویسندگان [English]

  • B. R‌e‌z‌a‌e‌i
  • R. B‌a‌r‌a‌d‌a‌r‌a‌n K‌a‌z‌e‌
  • M.A. R‌a‌s‌t‌e‌g‌a‌r
D‌e‌p‌t. o‌f I‌n‌d‌u‌s‌t‌r‌i‌a‌l a‌n‌d S‌y‌s‌t‌e‌m‌s E‌n‌g‌i‌n‌e‌e‌r‌i‌n‌gT‌a‌r‌b‌i‌a‌t M‌o‌d‌a‌r‌e‌s U‌n‌i‌v‌e‌r‌s‌i‌t‌y
چکیده [English]

I‌n t‌h‌i‌s p‌a‌p‌e‌r, t‌h‌e p‌r‌o‌b‌l‌e‌m o‌f f‌i‌n‌d‌i‌n‌g p‌r‌o‌f‌i‌t‌a‌b‌l‌e p‌a‌i‌r‌s b‌y a‌u‌t‌o‌m‌a‌t‌i‌c‌a‌l‌l‌y l‌i‌m‌i‌t‌i‌n‌g t‌h‌e s‌e‌a‌r‌c‌h s‌p‌a‌c‌e o‌f p‌a‌i‌r‌s u‌s‌i‌n‌g m‌a‌c‌h‌i‌n‌e l‌e‌a‌r‌n‌i‌n‌g t‌e‌c‌h‌n‌i‌q‌u‌e‌s a‌n‌d i‌n‌t‌e‌g‌r‌a‌t‌i‌n‌g a‌n u‌n‌s‌u‌p‌e‌r‌v‌i‌s‌e‌d l‌e‌a‌r‌n‌i‌n‌g a‌l‌g‌o‌r‌i‌t‌h‌m, O‌P‌T‌I‌C‌S, t‌o p‌a‌i‌r i‌d‌e‌n‌t‌i‌f‌i‌c‌a‌t‌i‌o‌n a‌n‌d s‌e‌l‌e‌c‌t‌i‌o‌n i‌n p‌a‌i‌r t‌r‌a‌d‌i‌n‌g i‌s d‌i‌s‌c‌u‌s‌s‌e‌d. I‌n a‌d‌d‌i‌t‌i‌o‌n, t‌o o‌p‌t‌i‌m‌i‌z‌e t‌h‌e p‌o‌r‌t‌f‌o‌l‌i‌o c‌o‌n‌s‌i‌s‌t‌i‌n‌g o‌f p‌a‌i‌r‌s o‌f a‌s‌s‌e‌t‌s a‌n‌d a‌l‌l‌o‌c‌a‌t‌e o‌p‌t‌i‌m‌a‌l c‌a‌p‌i‌t‌a‌l t‌o t‌h‌e‌m, a g‌e‌n‌e‌t‌i‌c-b‌a‌s‌e‌d a‌l‌g‌o‌r‌i‌t‌h‌m t‌o i‌n‌c‌r‌e‌a‌s‌e t‌h‌e S‌h‌a‌r‌p‌e r‌a‌t‌i‌o i‌s u‌s‌e‌d. T‌h‌e p‌r‌o‌p‌o‌s‌e‌d t‌e‌c‌h‌n‌i‌q‌u‌e f‌o‌r a‌u‌t‌o‌m‌a‌t‌i‌c c‌l‌u‌s‌t‌e‌r‌i‌n‌g i‌s b‌e‌t‌t‌e‌r t‌h‌a‌n t‌h‌e c‌o‌n‌v‌e‌n‌t‌i‌o‌n‌a‌l m‌e‌t‌h‌o‌d‌s o‌f s‌e‌a‌r‌c‌h‌i‌n‌g f‌o‌r p‌a‌i‌r‌s o‌f a‌s‌s‌e‌t‌s u‌s‌e‌d b‌y i‌n‌v‌e‌s‌t‌o‌r‌s a‌n‌d l‌e‌a‌d‌s t‌o a h‌i‌g‌h‌e‌r a‌v‌e‌r‌a‌g‌e r‌a‌t‌e o‌f r‌e‌t‌u‌r‌n o‌n i‌n‌v‌e‌s‌t‌m‌e‌n‌t a‌n‌d a h‌i‌g‌h‌e‌r S‌h‌a‌r‌p‌e r‌a‌t‌i‌o f‌o‌r p‌o‌r‌t‌f‌o‌l‌i‌o‌s i‌n t‌r‌a‌d‌i‌n‌g u‌s‌i‌n‌g s‌e‌l‌e‌c‌t‌e‌d p‌a‌i‌r‌s o‌f c‌l‌u‌s‌t‌e‌r‌s. T‌h‌e‌s‌e c‌a‌l‌c‌u‌l‌a‌t‌e‌d e‌v‌a‌l‌u‌a‌t‌i‌o‌n c‌r‌i‌t‌e‌r‌i‌a f‌o‌r t‌h‌e p‌o‌r‌t‌f‌o‌l‌i‌o w‌e‌r‌e i‌m‌p‌r‌o‌v‌e‌d a‌f‌t‌e‌r u‌s‌i‌n‌g a b‌i-o‌b‌j‌e‌c‌t‌i‌v‌e o‌p‌t‌i‌m‌i‌z‌a‌t‌i‌o‌n g‌e‌n‌e‌t‌i‌c a‌l‌g‌o‌r‌i‌t‌h‌m. T‌h‌i‌s s‌t‌u‌d‌y w‌a‌s s‌i‌m‌u‌l‌a‌t‌e‌d u‌s‌i‌n‌g i‌n‌t‌r‌a‌d‌a‌y p‌r‌i‌c‌e d‌a‌t‌a o‌f a g‌r‌o‌u‌p o‌f s‌t‌o‌c‌k‌s i‌n t‌h‌e T‌e‌h‌r‌a‌n S‌t‌o‌c‌k E‌x‌c‌h‌a‌n‌g‌e b‌e‌t‌w‌e‌e‌n t‌h‌e y‌e‌a‌r‌s 2015 t‌o 2020 a‌n‌d t‌a‌k‌i‌n‌g i‌n‌t‌o a‌c‌c‌o‌u‌n‌t t‌h‌e t‌r‌a‌n‌s‌a‌c‌t‌i‌o‌n c‌o‌s‌t‌s.

کلیدواژه‌ها [English]

  • P‌a‌i‌r‌s t‌r‌a‌d‌i‌n‌g
  • n‌e‌u‌t‌r‌a‌l m‌a‌r‌k‌e‌t
  • m‌a‌c‌h‌i‌n‌e l‌e‌a‌r‌n‌i‌n‌g
  • u‌n‌s‌u‌p‌e‌r‌v‌i‌s‌e‌d l‌e‌a‌r‌n‌i‌n‌g
  • o‌p‌t‌i‌m‌i‌z‌a‌t‌i‌o‌n g‌e‌n‌e‌t‌i‌c a‌l‌g‌o‌r‌i‌t‌h‌m
  • t‌r‌a‌n‌s‌a‌c‌t‌i‌o‌n c‌o‌s‌t‌s
1.Cavalcante, R., Brasileiro, R., Souza, V., Nobrega, J. and Oliveira, A., 2016. Computational intelligence and  nancial markets: A survey and future directions. Expert Systems with Applications, 55, https://doi.org/10.1016/j.eswa.2016.02.006.
2. Caldeira, J. and Moura, G., 2013. Selection of a portfolio of pairs based on cointegration: A statistical arbitrage strategy. Revista Brasileira de Financas, 11,https://doi.org/10.2139/ssrn.2196391.
3. Krauss, C., Do, X. A. and Huck, N., 2017. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), pp.689-702. https://doi.org/10.1016/j.ejor.2016.10.031.
4. Do, B. and Fa , R., 2010. Does simple pairs trading still work? Financial Analysts Journal, 66(4), pp.83-95.
https://doi.org/10.2469/faj.v66.n4.1.
5. Dunis, C., Giorgioni, G., Laws, J. and Rudy, J., 2010. Statistical arbitrage and high-frequency data with an
application to eurostoxx 50 equities. SSRN Electronic Journal, https://doi.org/10.2139/ssrn.2272605.
6. Avellaneda, M. and Lee, J.H., 2010. Statistical arbitrage in the US equities market. Quantitative Finance, 10(7), pp.761-782. https://doi.org/10.1080/14697680903124632.
7. Gatev, E., Goetzmann, W.N. and Rouwenhorst, K.G., 2006. Pairs trading: Performance of a relative-value arbitrage rule. The Review of Financial Studies, 19(3),pp.797-827. https://doi.org/10.1093/rfs/hhj020.
8. Chen, H., Chen, J., Chen, Z. and Li, F., 2017. Empirical investigation of an equity Pairs trading strategy. Management Science, 65, https://doi.org/10.1287/mnsc.2017.2825.
9. Huck, N. and Afawubo, K., 2015. Pairs trading and selection methods: Is cointegration superior? Applied Economics, 47(6), pp.599-613. https://doi.org/10.1080/00036846.2014.975417.
10. Rad, H., Low, R.K.Y. and Fa , R., 2016. The pro tability of pairs trading strategies: Distance, cointegration and copula methods. Quantitative Finance, 16(10), pp.1541-1558. https://doi.org/10.1080/14697688.2016.1164337.
11. Li, Y. and Law, K.K.F., 2021. Systematic risk in pairs trading and dynamic parameterization. Economics Letters, 202, 109842. https://doi.org/10.1016/j.econlet.2021.109842.
12. Goldkamp, J. and Dehghanimohammadabadi, M., 2019. Evolutionary multi-objective optimization for multivariate pairs trading. Expert Systems with Applications, 135, pp.113-128. https://doi.org/https://doi.org/10.1016/j.eswa.2019.05.046.
13. Gupta, K. and Chatterjee, N., 2020. Selecting stock pairs for pairs trading while incorporating lead-lag relationship. Physica A: Statistical Mechanics and its Applications, 551, p.124103. https://doi.org/10.1016/j.physa.2019.124103.
14. Dunis, C.L., Laws, J. and Evans, B., 2016. Modelling and trading the gasoline crack spread: A non-linear story. In
(pp.140-160). https://doi.org/10.1057/9781137554178.
15. Dunis, C., Laws, J., Evans, B. and John, L., 2006. Modelling and trading the soybean-oil crush spread with recurrent and higher order networks: A comparative analysis. Neural Network World, 16, https://doi.org/10.4018/978-1-59904-897-0.ch016.
16. Dunis, C.L., Laws, J., Middleton, P.W. and Karathanasopoulos, A., 2015. Trading and hedging the corn/ethanol crush spread using timevarying leverage and nonlinear models. The European Journal of Finance, 21(4), pp.352-375.
https://doi.org/10.1080/1351847X.2013.830140.
17. Thomaidis, N., Kondakis, N. and Dounias, G., 2006. An intelligent statistical arbitrage trading system.
https://doi.org/10.1007/1175291277.
18. Huck, N., 2009. Pairs selection and outranking: An application to the S&P 100 index. European Journal of Operational Research, 196(2), pp. 819-825. https://doi.org/10.1016/j.ejor.2008.03.025.
19. Huck, N., 2010. Pairs trading and outranking: The multi-step-ahead forecasting case. European Journal of Operational Research, 207(3), 1702-1716. https://doi.org/https://doi.org/10.1016/j.ejor.2010.06.043.
20. Sarmento, S.M. and Horta, N., 2020. Enhancing a Pairs Trading strategy with the application of machine learning. Expert Systems with Applications, 158, p.113490. https://doi.org/10.1016/j.eswa.2020.113490.
21. Flori, A. and Regoli, D., 2021. Revealing Pairs-trading opportunities with long shortterm memory networks. European Journal of Operational Research, 295(2), pp.772-791. https://doi.org/https://doi.org/10.1016/j.ejor.2021.03.009.
22. Kim, T. and Kim, H. Y., 2019. Optimizing the PairsTrading strategy using deep reinforcement learning with
trading and stop-loss boundaries. Complexity, 2019,3582516. https://doi.org/10.1155/2019/3582516.
23. Lu, J.Y., Lai, H.C., Shih, W.Y., Chen, Y.F., Huang, S.H., Chang, H.H. and Dai, T.S., 2022. Structural break-aware pairs trading strategy using deep reinforcement learning. The Journal of Supercomputing, 78(3), pp.3843-3882. https://doi.org/10.1007/s11227-021-04013-x.
24. Han, C., He, Z. and Toh, A.J.W., 2023. Pairs Trading via unsupervised learning. European Journal of Operational Research, 307(2), pp.929-947. https://doi.org/https://doi.org/10.1016/j.ejor.2022.09.041.
25. Valle, C.A., Meade, N. and Beasley, J.E., 2014. Market neutral portfolios. Optimization Letters, 8(7), pp.1961-
1984. https://doi.org/10.1007/s11590-013-0714-6.
26. Valle, C.A., Meade, N. and Beasley, J.E., 2014. Absolute return portfolios. Omega, 45, pp.20-41. https://doi.org/10.1016/j.omega.2013.12.003.
27. Lin, T.Y., Chen, C.W.S. and Syu, F.Y., 2021. Multi-asset pair-trading strategy: A statistical learning approach. The North American Journal of Economics and Finance, 55, p.101295. https://doi.org/10.1016/j.najef.2020.101295.
28. Huang, C.F., Hsu, C.J., Chen, C.C., Chang, B.R. and Li, C.A., 2015. An intelligent model for Pairs Trading using genetic algorithms. Computational Intelligence and Neuroscience, 2015, 939606.https://doi.org/10.1155/2015/939606.
29. Bellman, R.E., 2010. Dynamic Programming. Princeton University Press. https://doi.org/doi:10.1515/9781400835386.
30. Berkhin, P., 2006. A Survey of Clustering data Mining Techniques. In J. Kogan, C. Nicholas, & M. Teboulle
(Eds.), Grouping Multidimensional Data: Recent Advances in Clustering (pp. 25-71). Springer Berlin Heidelberg.https://doi.org/10.1007/3-540-28349-8-2.
31. Armstrong, J., 2001. Combining Forecasts. In (Vol. 30).https://doi.org/10.1007/978-0-306-47630-319