توسعه‌ی مدل استوار بازنگری سبد سرمایه‌گذاری با درنظرگرفتن عوامل بنیادی

نوع مقاله : یادداشت فنی

نویسندگان

دانشکده‌ی مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.

چکیده

بازنگری سبد سرمایه‌گذاری از مهم‌ترین بخش‌های مدیریت سرمایه‌گذاری است. بعد از تشکیل سبد سرمایه‌گذاری، وضعیت بنیادی شرکت‌ها در گذر زمان به دلایلی، نظیر: تغییر وضعیت اقتصادی کشور و تغییر سیاست‌های مربوط به خرید، تولید و فروش محصولات شرکت ثابت نمی‌ماند. در پژوهش حاضر، مدل چندهدفه‌ی بازنگری سبد سرمایه‌گذاری با درنظرگرفتن عوامل بنیادی سهام ارائه‌ شده است. با توجه به درنظرگرفتن چندین معیار برای اهداف، برای حل مدل از برنامه‌ریزی آرمانی فازی چندگزینشی استفاده شده ‌است. همچنین، جهت تطابق بیشتر مدل با واقعیت، عدم‌قطعیت در پارامترهای مدل لحاظ و مدل با استفاده از رویکرد بهینه‌سازی استوار بازنویسی شده است. در انتها، با اتخاذ راهبرد بازنگری بیمه‌کردن سبد با نسبت ثابت و رعایت حد ضرر تعیین‌شده توسط سرمایه‌گذاران، مدل ارائه‌شده با استفاده از داده‌های واقعی بورس اوراق بهادار تهران حل و نتایج آن بررسی شده ‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Developing a robust portfolio rebalancing model by considering fundamental factors

نویسندگان [English]

  • Mohammadhossein Vafaeikhah
  • Amir Abbas Najafi
Faculty of Industrial Engineering, K. N. Toosi University of Technology
چکیده [English]

Portfolio rebalancing is one of the most important parts of investment management. After forming a portfolio by an investor, due to changing prices in the market, the portfolio value deviates from its initial amount. Therefore, the investor must rebalance the investment portfolio to achieve their goal. On the other hand, the fundamental factors of companies do not remain constant over time due to reasons such as changes in the country's economic situation and changes in policies related to the purchase, production, and sale of the company’s products. Furthermore, to select the best stocks that are prone to grow, it is essential to pay attention to the fundamental factors of companies by examining important financial ratios, including net profit ratio, return on assets (ROA), return on equity ratio (ROE), debt ratio (DR) and other ratios. In this research, a multi-objective model for the portfolio rebalancing problem is developed to consider the fundamental factors of stocks. To include the fundamental factors to the model, the TOPSIS technique is applied. In addition, due to considering several goals in the model, multi-choice fuzzy ideal programming is used to solve the model. Also, due to the variety of investors' expectations and the uncertainty of some parameters, including the ratio P/E and expected stock return, the uncertainty in the parameters of the model has been taken into account and the model is formulated using Bertsimas and Sim's approach from robust optimization approaches. In addition, by adopting Constant Proportion Portfolio Insurance strategy (CPPI) and maintaining the stop loss in specific time periods such as three months, the developed model is solved using the real data of the Tehran Stock Exchange and its results have been analyzed. In summary, the results show that the return and the Sharp ratio of the proposed portfolio are better than the traditional models.

کلیدواژه‌ها [English]

  • Portfolio Management
  • Fundamental Analysis
  • Weighted-additive Fuzzy Multi Choice Goal Programming
  • Robust Optimization
1.Najafi, A. B. and Aghaei, M., 2019. Proposing a Portfolio Rebalancing Model for Small Investors. Journal of Investment knowledge, 8(31), pp.317-337. [In Persian].
2. Markowitz, H., 1952. Portfolio selection. The journal of finance, 7(1), pp. 77-91.https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
3. Markowitz, M., 1967. Portfolio Selection. Efficient Diversification of Investments, Wiley, New York.
https://doi.org/10.2307/3006625.
4. Smith, K. V., 1967. A transition model for portfolio revision. The Journal of Finance, 22(3), pp. 425-439. https://doi.org/10.1111/j.1540-6261.1967.tb02978.x.
5. Pogue, G. A., 1970. An extension of the Markowitz portfolio selection model to include variable transaction costs. The Journal of Finance, 22(5), pp.1005-1027. https://doi.org/10.1111/j.1540-6261.1970.tb00865.x.
6. Kumar, P., Panda, G. and Gupta, U. C., 2015. Portfolio rebalancing model with transaction costs using interval optimization. OPSEARCH, 52, pp. 827-860. https://doi.org/10.1007/s12597-015-0210-0.
7. Woodside, M., Lucas, C. and Beasley, J. E., 2013. Portfolio rebalancing with an investment horizon and transaction costs. Omega, 41(2), pp. 406-420. https://doi.org/10.1016/j.omega.2012.03.003.
8. Glen, J. J., 2011. Mean-variance portfolio rebalancing with transaction costs and funding changes. Journal of the Operational Research Society, 62(4), pp. 667-676. https://doi.org/10.1057/jors.2009.148.
9. Zandieh, M. and Mohaddesi, S. O., 2019. Portfolio rebalancing under uncertainty using meta-heuristic algorithm. International Journal of Operational Research, 36(1), pp.12-29. https://doi.org/10.1504/ijor.2019.102068.
10. Fang, Y., Lai, K. K. and Wang, S. Y., 2006. Portfolio rebalancing model with transaction costs based on fuzzy decision theory. European Journal of Operational Research, 175(2), pp. 879-893. https://doi.org/10.1016/j.ejor.2005.05.020.
11. Najafi, A. B. and Fazeli, E., 2015. The dualobjective model of index tracker portfolio review considering transaction costs and solving it with meta-heuristic algorithms. Financial Knowledge of Securities Analysis, 7(24), pp. 79-95. [In Persian].
12. Tarczynski, W., 2014. Different variant of fundamental portfolio. Folio Oeconomica Stetinensia, 14(22), pp. 47-62. https://doi.org/10.2478/foli-2014-0104.
13. Ghahtarani, A. and Najafi, A. A., 2013. Robust goal programming for multi-objective portfolio selection problem. Economic Modelling, 33, pp.588–592. https://doi.org/10.1016/j.econmod.2013.05.006.
14. Khodamoradi, T., Salahi, M. and Najafi, A. A., 2020. Robust ccmv model with short selling and risk-neutral interest rate. Phys A Stat Mech Appl 124429.https://doi.org/10.1016/j.physa.2020.124429.
15. Swain, P. and Ojha, A., 2021. Robust approach for uncertain portfolio allocation problems under box uncertainty. Recent trends in applied mathematics, select proceedings of AMSE 2019, pp 347–35.https://doi.org/10.1007/978-981-15-9817-3_23.
16. Ghahtarani, A., Saif, A. and Ghasemi, A., 2022. Robust portfolio selection problems: a comprehensive review. Operational Research, 22, pp. 3203–3264. https://doi.org/10.1007/s12351-022-00690-5.
17. Zadeh, L. A., 1965. Fuzzy sets. Information and Control, 8, pp. 338–353.https://doi.org/10.1016/S0019-9958(65)90241-X.
18. Narasimhan, R., 1980. Goal programming in a fuzzy environment. Decision Sciences, 11, pp. 325–336. https://doi.org/10.1111/j.1540-5915.1980.tb01142.x.
19. Hannan, E. L., 1981. On fuzzy goal programming. Decision Sciences, 12, pp. 522–531.https://doi.org/10.1111/j.1540-5915.1981.tb00102.x.
20. Kim, J. S. and Whang, K. M., 1998. A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function. European Journal of Operational Research, 107, pp.614–624. https://doi.org/10.1016/S0377-2217(96)00363-3.
21. Chang, C. T., 2008. Multi-choice goal programming. The International Journal of Management Science, 34 (4), pp. 389–396.https://doi.org/10.1016/j.omega.2005.07.009.
22. Chiang, L., Hocine, A., Kouaissah, N. and Zhuang, Z. Y., 2020. Weighted-additive Fuzzy Multi Choice Goal Programming (WA-FMCGP). European Journal of Operational Research, 285, pp. 642-654.
https://doi.org/10.1016/j.ejor.2020.02.009.
23. Savage, A., 2010. Optimal Portfolio Rebalancing Strategy: Evidence from Finnish Stocks. Lambert Academic Publishing, English.
24. Cont, R. and Tankov, P., 2009. Constant proportion portfolio insurance in the presence of jumps in asset prices. Mathematical Finance, 19, pp. 379-401.https://doi.org/10.1111/j.1467-9965.2009.00377.x.
25. Ahmadi, M., 2015. Preparation for capital market principles test. Ariana Qalam Publications, Tehran, Fourth edition. [In Persian].
26. Hwang, C. L. and Yoon, K. P., 1981. Multiple attribute decision making. Methods and applications, New York.
https://doi.org/10.1007/978-3-642-48318-9.
27. Mirghafori, S. H. A., 2015. Multi-criteria decision making methods. Academic Jihad Publications,Tehran, First edition. [In Persian].
28. Mulvey, J. M., Vanderbei, R. J. and Zenios, S. A.,1995. Robust optimization of large scale systems. Operation Research, 43 (2), pp. 264–281.https://doi.org/10.1287/opre.43.2.264.
29. Soyster, A., 1973. Convex programming with setinclusive constraints and applications to inexact linear programming. Operations Research, 21, pp.1154–1157. https://doi.org/10.1287/opre.21.5.1154.
30. Ben-Tal, A. and Nemirovski, A., 2000. Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming, 88, pp. 411–424.https://doi.org/10.1007/PL00011380.
31. Bertsimas, D. and Sim, M., 2003. Robust discrete optimization and network flows. Mathematical Programming, 98, pp. 49–71. https://doi.org/10.1007/s10107-003-0396-4.
32. Bertsimas, D. and Sim, M., 2004. The price of robustness. Operations Research, 52, pp. 35–53. https://doi.org/10.1287/opre.1030.0065.
33. Konno, H. and Yamazaki, H., 1991. Mean-absolute deviation portfolio optimization model and its application to Tokyo stock market. Management Science, 37, pp. 519–531.https://doi.org/10.1287/mnsc.37.5.519.
34. Charnes, A. and Cooper, W. W., 1959. Chance constrained programming. Management science,6(1), pp. 73-79.
https://doi.org/10.1287/mnsc.6.1.73.