مرور نظام‌مند روش‌های آماری در پایش داده‌های تصویری

نوع مقاله : مروری

نویسندگان

1 دانشکده‌‌ی مهندسی صنایع و مدیریت، دانشگاه صنعتی مالک اشتر، تهران.

2 دانشکده‌ی مهندسی هوافضا، دانشگاه صنعتی مالک اشتر، تهران.

چکیده

امروزه یکی از چالش‌های پیش‌رو در حوزه‌ی کنترل فرآیند آماری، چگونگی رسیدگی به کلان‌داده‌ها به‌منظور ارزیابی کیفیت فرآیندها و محصولات است. یکی از انواع پرکاربرد کلان‌داده‌ها، تصویر است. تصاویر به سبب قابلیت‌هایی همچون دستیابی آسان و ارزان، ارائه‌ی اطلاعات درخصوص ابعاد، و هندسه‌ی محصولات و شناسایی عیوب در فرآیند‌های صنعتی بسیار مورد توجه هستند. به همین سبب به‌کارگیری روش‌های کنترل فرآیند آماری برای داده‌های تصویری به‌منظور شناسایی تغییرات در عملکرد فرآیند و محصولات یک حوزه‌ی جذاب برای پژوهشگران و کارشناسان کیفیت در عصر کیفیت 4 محسوب می‌شود. مطالعه‌ی‌ حاضر، یک پژوهش مروری نظام‌مند با طبقه‌بندی مفهومی است، که منابع علمی معتبر در حوزه‌ی پایش فرآیند آماری و داده‌های تصویری بدون محدودیت زمانی را بررسی و در آخر، برخی از فرصت‌های موجود برای مطالعات آتی را در به‌کارگیری روش‌های کنترل فرآیند آماری با داده‌های تصویری بیان کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Statistical Methods for Image Data Monitoring: A Systematic Overview

نویسندگان [English]

  • Atiyeh Alanchari 1
  • Karim Atashgar 1
  • Morteza Abbasi 1
  • Mostafa Khazaee 2
1 Department of Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran,
2 Department of Aerospace, Malek Ashtar University of Technology, Tehran, Iran,
چکیده [English]

Nowadays, one of the biggest challenges in the field of statistical process control (SPC) is how to effectively handle the abundance of big data to evaluate the quality of processes and products. Image data, which is increasingly utilized in the manufacturing and service industries, poses a significant component of this big data. Images offer a cost-effective means of swiftly generating a large volume of data within just a few seconds. Machine vision systems (MVSS) are extensively employed across various industries for obtaining information pertaining to dimensions, geometric features, surface defects, surface finish, as well as the differentiation between conforming and nonconforming products. Consequently, researchers are placing greater emphasis on utilizing statistical process control methods for analyzing image data to detect process variations and defective products, among other goals. This research contribution is highly attractive to practitioners seeking to leverage digital tools for quality management due to its diverse range of potential applications in addressing real-world issues (e.g., Quality 4). Notably, the research effectively integrates machine learning, traditional statistical methods, and image processing within the framework of image-based statistical process monitoring. Choosing appropriate types of images should consider their respective strengths and weaknesses. Binary images are well-suited for monitoring geometric features, grayscale images are suitable for assessing product surfaces, and multi-spectral images prove useful when color represents a critical quality characteristic. This paper presents a systematic overview accompanied by a conceptual classification scheme based on content analysis methodology. The objective is to analyze and categorize prior research that has explored various aspects of statistical process monitoring applied to image data across different industries. The focus is specifically on reliable scientific sources, without any constraints on time limitations. Moreover, drawing from 64 relevant papers in this field, the paper highlights research gaps and provides directions to inspire future studies.

کلیدواژه‌ها [English]

  • Statistical Process control (SPC)
  • Statistical monitoring of image data
  • machine learning
  • image processing
1.Qiu, P., 2017. Statistical Process Control Charts as a Tool for Analyzing Big Data. In Big and Complex Data Analysis, Ahmed, Ed. pp. 123-138. Springer, Cham. https://doi.org/10.1007/978-3-319-41573-4_7
2.Joshi, K. N., Patil, B. T. and Vaishnav, H. B., 2020. Principal Components Based Multivariate Statistical Process Monitoring of Machining Process Using Machine Vision Approach. New Paradigm of Industry 4.0, Patnaik, ed. pp. 145-160. Springer, Cham. https://doi.org/10.1007/978-3-030-25778-1_7
3.Maroš, T., Vladimír, B. and Caner, T. M., 2011. Monitoring chenille yarn defects using image processing with control charts. Textile Research Journal, 81(13), 1344-1353. https://doi.org/10.1177/0040517511402123
4.Koosha, M., Noorossana, R. and Ahmadi, O., 2022. Two‐dimensional wavelet based statistical monitoring of image data. Quality and Reliability Engineering International, 38(7), 3797-3815. https://doi.org/10.1002/qre.3174
5.Koosha, M., Noorossana, R. and Megahed, F., 2017. Statistical process monitoring via image data using wavelets. Quality and Reliability Engineering International, 33(8), 2059-2073. https://doi.org/10.1002/qre.2167
6.Amirkhani, F. and Amiri, A., 2017. A novel framework for spatiotemporal monitoring and post‐signal diagnosis of processes with image data. Quality and Reliability Engineering International, 36(2), 705-735. https://doi.org/10.1002/qre.2600
7.Eslami, D., Izadbakhsh, H., Ahmadi, O., and Zarinbal, M., 2023. Statistical monitoring of image data using multi-channel functional principal component analysis. Communications in Statistics-Theory and Methods, 52(12), 4165-4182. https://doi.org/10.1080/03610926.2021.1986539
8.Eslami, D., Izadbakhsh, H., Ahmadi, O. and Zarinbal, M., 2022. Statistical modeling and monitoring of image data in the presence of temporal and spatial correlations. Scientia Iranica, Article in Press. https://doi.org/24200/sci.2022.59045.6040
9.Jiang, B. C., Wang, C. C. and Liu, H. C., 2005. Liquid crystal display surface uniformity defect inspection using analysis of variance and exponentially weighted moving average techniques. International Journal of Production Research, 43(1), 67-80. https://doi.org/10.1080/00207540412331285832
10.Shahrabi, M., Amiri, A., Saligheh Rad, H. and Ghofrani, S., 2020. The Diagnosis of Patients Suspected to Bone Marrow Metastasis based on Multivariate Control Chart. International Journal of Hospital Research, 9(2), 175-185. https://doi.org/10.22094/joie.2021.1919440.1815
11.Roy, A. and Mukherjee, P. S., 2023. A control chart for monitoring images using jump location curv Quality Engineering, 36(2), pp. 439-452. https://doi.org/10.1080/08982112.2023.2232441
12.Chiu, D., Guillaud, M., Cox, D., Follen, M. and MacAulay, C., 2004. Quality assurance system using statistical process control: an implementation for image cytometry. Analytical Cellular Pathology, 26(3), 101-117. https://doi.org/10.1155/2004/794021
13.Simmons, A., Moore, E. and Williams, S. C., 1999. Quality control for functional magnetic resonance imaging using automated data analysis and Shewhart charting. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 41(6), 1274-1278. https://doi.org/10.1002/(SICI)1522-2594(199906)41:6<1274::AID-MRM27>3.0.CO;2-1
14.Fattahzadeh, M. A. and Saghaei, A., 2020. A statistical method for sequential images–based process monitoring. International Journal of Engineering, 33(7), 1285-1292. https://doi.org/10.5829/IJE.2020.33.07A.15
15.Woodall, W. H., Adams, B. M. and Benneyan, J. C., 2012. The Use of Control Charts in Healthcare Statistical Methods in Healthcare. In Statistical Methods in Healthcare, F.W. Faltin, R.S. Kenett and F. Ruggeri, Ed., 1st Edn., pp. 251-267, Wiley. https://doi.org/10.1002/9781119940012.ch12
16.Cohen, A. and Atoui, M. A., 2022. On wavelet-based statistical process monitoring. Transactions of the Institute of Measurement and Control, 44(3), 525-538. https://doi.org/10.1177/0142331220935708
17.Atashgar, K. and Abbassi, L., 2021. A new model to monitor very small effects of a polynomial profile. International Journal of Quality & Reliability Management, 38(4), 1023-1043. https://doi.org/10.1108/IJQRM-12-2019-0375
18.Maleki, M. R., Amiri, A. and Castagliola, P., 2018. An overview on recent profile monitoring papers (2008–2018) based on conceptual classification scheme. Computers & Industrial Engineering, 126, 705-728. https://doi.org/10.1016/j.cie.2018.10.008
19.Jones, C. L., Abdel‐Salam, A. S. G. and Mays, D. A., 2021. Practitioners guide on parametric, nonparametric, and semiparametric profile monitoring. Quality and Reliability Engineering International, 37(3), 857-881. https://doi.org/10.1002/qre.2770
20.Noorossana, R., Saghaei, A. and Amiri, A., 2011. Statistical Analysis of Profile Monitoring. John Wiley & Sons. https://doi.org/10.1002/9781118071984
21.Tran, P. H., Ahmadi Nadi, A., Nguyen, T. H., Tran, K. D. and Tran, K. P., 2022. Application of Machine Learning in Statistical Process Control Charts: A Survey and Perspective, In Control Charts and Machine Learning for Anomaly Detection in Manufacturing, 7-42. Springer, Cham. https://doi.org/10.1007/978-3-030-83819-5_2
22.Qiu, P., 2018. Jump regression, image processing, and quality control. Quality Engineering, 30(1), 137-153. https://doi.org/10.1080/08982112.2017.1357077
23.Kang, Y., 2022. Statistical quality control using image intelligence: A sparse learning approach. Naval Research Logistics (NRL), 69(7), pp. 996-1008. https://doi.org/10.1002/nav.22069
24.Zou, C. and Qiu, P., 2009. Multivariate statistical process control using LASSO. Journal of the American Statistical Association, 104(488), pp. 1586-1596. ‏https://doi.org/10.1198/jasa.2009.tm08128
25.Chen, S., 2020. A Framework for Using Fused Image Data in Statistical Process Control. PhD thesis. Western Michigan University.
26.Fan, L., Zhang, F., Fan, H. and Zhang, C., 2019. Brief review of image denoising techniques. Visual Computing for Industry, Biomedicine, and Art, 2, 1-12. https://doi.org/10.1186/s42492-019-0016-7
27.Rana, S. B. and Rana, S. B., 2015. A review of medical image enhancement techniques for image processing. International Journal of Current Engineering and Technology, 5(2), pp. 1282-1286. https://doi.org/10.14741/Ijcet/22774106/5.2.2015.121
28.Padmavathy, V. S. and Priya, R., 2018. Image contrast enhancement techniques-a survey. International Journal of Engineering & Technology, 7(2.33), pp. 466-469. https://doi.org/10.14419/ijet.v7i2.33.14811 ‏
29.Lin, X., Ma, Y. L., Ma, L. Z., and Zhang, R. L., 2014. A survey for image resizing. Journal of Zhejiang University SCIENCE C, 15(9), 697-716. https://doi.org/10.1631/jzus.c1400102
30.Gonzalez, R. C. and Woods, R. E., 2002. Digital Image Processing, Second Edn., Prentice-Hall., Inc. Newjersey.
31. Sonka, M., Hlavac, V., Boyle, R., 1993. Image pre-processing, In Image Processing, Analysis and Machine Vision, Springer, Boston. https://doi.org/10.1007/978-1-4899-3216-7_4
‏32. Qiu, P., 2005. Image Processing and Jump Regression Analysis. John Wiley & Sons.
33. Eslami, D., Izadbakhsh, H., Ahmadi, O. and Zarinbal, M., 2023. Spatial-nonparametric regression: an approach for monitoring image data. Communications in Statistics-Theory and Methods, 52(12), pp. 4114-4137. https://doi.org/10.1080/03610926.2021.1986535
34. ‏Megahed, F. M., Woodall, W. H. and Camelio, J. A., 2011. A review and perspective on control charting with image data. Journal of Quality Technology, 43(2), pp. 83-98. https://doi.org/10.1080/00224065.2011.11917848
35. Kolbe, R. and Brunette, M., 1991. Content analysis research: An examination of applications with directives for improving research, reliability and objectivity. Journal of Consumer Research, 18(2), pp. 243–250. https://doi.org/10.1086/209256
36. Hachicha, W. and Ghorbel, A., 2012. A survey of control-chart pattern-recognition literature (1991–2010) based on a new conceptual classification scheme. Computers & Industrial Engineering, 63(1), 204-222. https://doi.org/10.1016/j.cie.2012.03.002
37. Jalali, S. and Wohlin, C., 2012. Systematic literature studies: database searches vs. backward snowballing. Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, Lund, Sweden, pp. 29-38. https://doi.org/10.1145/2372251.2372257
38. Amiri, A. and Allahyari, S., 2012. Change point estimation methods for control chart postsignal diagnostics: a literature review. Quality and Reliability Engineering International, 28(7), pp. 673-685. https://doi.org/10.1002/qre.1266
39. Megahed, F. M., Wells, L. J., Camelio, J. A. and Woodall, W. H., 2012. A spatiotemporal method for the monitoring of image data. Quality and Reliability Engineering International, 28(8), pp. 967-980. https://doi.org/10.1002/qre.1287
40. He, Z., Zuo, L., Zhang, M. and Megahed, F. M., 2016. An image-based multivariate generalized likelihood ratio control chart for detecting and diagnosing multiple faults in manufactured products. International Journal of Production Research, 54(6), pp. 1771-1784. https://doi.org/10.1080/00207543.2015.1062569
41.Zuo, L., He, Z. and Zhang, M., 2020. An EWMA and region growing based control chart for monitoring image data. Quality Technology & Quantitative Management, 17(4), 470-485. https://doi.org/10.1080/16843703.2019.1682751
42.Prats-Montalbán, J. M., De Juan, A. and Ferrer, A., 2011. Multivariate image analysis: a review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23. https://doi.org/10.1016/j.chemolab.2011.03.002
43.Mohan, V. M., Kanaka Durga, R., Devathi, S. and Srujan Raju, K., 2016. Image processing representation using binary image; grayscale, color image, and histogram. Proceedings of the Second International Conference on Computer and Communication Technologies, Springer, New Delhi, pp. 353-361. ‏https://doi.org/10.1007/978-81-322-2526-3_37
44. Patel, I., Patel, S. and Patel, A., 2018. Analysis of various image preprocessing techniques for denoising of flower images. International Journal of Computer Sciences and Engineering, 6(5), pp. 1111-1117. https://doi.org/10.26438/ijcse/v6i5.11111117
45.Landgrebe, D., 2002. Hyperspectral image data analysis. IEEE Signal Processing Magazine, 19(1), pp. 17-28. https://doi.org/10.1109/79.974718
46.Yao, B., Imani, F., Sakpal, A. S., Reutzel, E. W. and Yang, H., 2018. Multifractal analysis of image profiles for the characterization and detection of defects in additive manufacturing. Journal of Manufacturing Science and Engineering, 140(3), 031014. https://doi.org/10.1115/1.4037891
47.Kazemi, S. and Niaki, S., 2021. Monitoring image-based processes using a PCA-based control chart and a classification technique. Decision Science Letters, 10(1), pp. 39-52. http://doi.org/10.5267/j.dsl.2020.10.005
48.Imani, F., Yao, B., Chen, R., Rao, P. and Yang, H., 2019. Joint multifractal and lacunarity analysis of image profiles for manufacturing quality control. Journal of Manufacturing Science and Engineering, 141(4), pp. 044501-7. https://doi.org/10.1115/1.4042579
49.Fathizadan, S., Ju, F. and Lu, Y., 2021. Deep representation learning for process variation management in laser powder bed fusion. Additive Manufacturing, 42, https://doi.org/10.1016/j.addma.2021.101961
50.Prats-Montalbán, J. M. and Ferrer, A., 2014. Statistical process control based on Multivariate Image Analysis: A new proposal for monitoring and defect detection. Computers & Chemical Engineering, 71, 501-511. https://doi.org/10.1016/j.compchemeng.2014.09.014
51.Pacella, M., Grieco, A. and Blaco, M., 2017. Machine vision based quality control of free-form profiles in automatic cutting processes. Computers & Industrial Engineering, 109, 221-232. https://doi.org/10.1016/j.cie.2017.04.039
52.Tuceryan, M. and Jain, A. K., 1998. Texture Analysis. Handbook of Pattern Recognition and Computer Vision, Chen CH, Pau LF, Wang PSP, Eds., pp. 235-276. https://doi.org/10.1142/9789814343138_0010
53.Palm, C., 2004. Color texture classification by integrative co-occurrence matrices. Pattern Recognition, 37(5), pp. 965-976. https://doi.org/10.1016/j.patcog.2003.09.010
54. Jiménez, L. O., Rivera-Medina, J. L., Rodríguez-Díaz, E., Arzuaga-Cruz, E. and Ramírez-Vélez, M., 2005. Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43(4), pp. 844-851. https://doi.org/10.1109/TGRS.2004.843193
55. Bhuiyan, A., Nath, B., Chua, J. and Kotagiri, R., 2007. Blood vessel segmentation from color retinal images using unsupervised texture classification. IEEE International Conference on Image Processing, San Antonio, TX, USA, 5, V-521. https://doi.org/10.1109/ICIP.2007.4379880
56. Mäenpää, T., Viertola, J. and Pietikäinen, M., 2003. Optimising colour and texture features for real-time visual inspection. Pattern Analysis and Applications, 6(3), pp. 169-175. https://doi.org/10.1007/s10044-002-0179-1
57. ‏Materka, A. and Strzelecki, M., 1998. Texture analysis methods–a review. Technical University of Lodz, Institute of Electronics, COST B11 Report, Brussels.‏
58. Malik, F. and Baharudin, B., 2013. Analysis of distance metrics in content-based image retrieval using statistical quantized histogram texture features in the DCT domain. Journal of King Saud University-Computer and Information Sciences, 25(2), 207-218. https://doi.org/10.1016/j.jksuci.2012.11.004
59. Xie J., Zhang L., You J. and Shiu S., 2015. Effective texture classification by texton encoding induced statistical features. Pattern Recognition, 48(2), pp. 447-457. https://doi.org/10.1016/j.patcog.2014.08.014
60.Pietikäinen, M., Mäenpää, T. and Viertola, J., 2002. Color texture classification with color histograms and local binary patterns, Workshop on Texture Analysis in Machine Vision, New York, NY, USA, 109-112.
61. Vujasinovic, T., Pribic, J., Kanjer, K., Milosevic, N. T., Tomasevic, Z., Milovanovic, Z. and Radulovic, M., 2015. Gray-level co-occurrence matrix texture analysis of breast tumor images in prognosis of distant metastasis risk. Microscopy and Microanalysis, 21(3), pp. 646-654. https://doi.org/10.1017/S1431927615000379
62. Liao, S., Law, M. W. and Chung, A. C., 2009. Dominant local binary patterns for texture classification. IEEE Transactions on Image Processing, 18(5), pp. 1107-1118. https://doi.org/10.1109/TIP.2009.2015682
63. Mäenpää, T. and Pietikäinen, M., 2005. Texture analysis with local binary patterns, Handbook of Pattern Recognition and Computer Vision, 197-216. World Scientific Publishing, Singopre. https://doi.org/10.1142/9789812775320_0011
64. Ojala, T., Pietikainen, M. and Maenpaa, T., 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), pp. 971-987. https://doi.org/10.1109/TPAMI.2002.1017623
65. Schael, M., 2001. Texture defect detection using invariant textural features. Joint Pattern Recognition Symposium, Berlin, Heidelberg: springer, 17-24. https://doi.org/10.1007/3-540-45404-7_3
66. Cho, J. H., Lee, J. M., Choi, S. W., Lee, D. and Lee, I. B., 2005. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science, 60(1), pp. 279-288. https://doi.org/10.1016/j.ces.2004.08.007
67. Chetverikov, D., 2000. Structural defects: General approach and application to textile inspection. Proceedings 15th International Conference on Pattern Recognition, Barcelona, 521-524. https://doi.org/10.1109/ICPR.2000.905390
68. Lopez, F., Acebron, F., Valiente, J. and Perez, E., 2001. A study of registration methods for ceramic tile inspection purposes. Proceedings of the IX Spanish Symposium on Pattern Recognition and Image Analysis, Benicasim, Spain, 145-150.
69. Mallik-Goswami, B. and Datta, A. K., 2000. Detecting defects in fabric with laser-based morphological image processing. Textile Research Journal, 70(9), pp. 758-762. https://doi.org/10.1177/004051750007000902
70. Noor, N. M., Then, J., Rijal, O. M., Kassim, R. M., Yunus, A., Zeki, A. A. and Suri, J. S., 2015. Automatic lung segmentation using control feedback system: morphology and texture paradigm. Journal of Medical Systems, 39(3), pp. 1- https://doi.org/10.1007/s10916-015-0214-6
71. Dollár, P. and Zitnick, C. L., 2014. Fast edge detection using structured forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8), pp. 1558-1570. https://doi.org/10.1109/TPAMI.2014.2377715
72. Manza, R. R., Gaikwad, B. P. and Manza, G. R., 2012. Use of edge detection operators for agriculture video scene feature extraction from mango fruits. Advances in Computational Research, 4(1), 50-53. https://doi.org/10.13140/RG.2.1.1716.1209
73. Basavaraj S. A., Malvade N. N. and Hanamaratti N. G., 2016. An edge texture features based methodology for bulk paddy variety recognition. Agricultural Engineering International: CIGR Journal, 18(1), pp. 399-410.
74. Raju, U. S. N., and Vijaya Kumar, V., 2008. Texture classification based on extraction of skeleton primitives using wavelets. Information Technology Journal, 7(6), 883-889. https://doi.org/10.3923/itj.2008.883.889
75. Kumar, V. V., Srikrishna, A., Somayajulu, D. V. L. N. and Babu, B. R., 2008. An improved iterative morphological decomposition approach for image skeletonization. Journal of Graphics Vision and Image Processing of ICGST, 8(1), pp. 47-54.
76. Ji, Q., Engel, J. and Craine, E., 2000 Texture analysis for classification of cervix lesions. IEEE Transactions on Medical Imaging, 19(11), pp. 1144-1149. https://doi.org/10.1109/42.896790
77. Cross, G. R. and Jain, A. K., 1983. Markov random field texture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(1), pp. 25-39. https://doi.org/10.1109/TPAMI.1983.4767341
78. Yousefi, S. and Kehtarnavaz, N., 2011. A new stochastic image model based on Markov random fields and its application to texture modeling. International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, pp. 1285-1288. https://org/10.1109/ICASSP.2011.5946646
79. Hassner, M. and Sklansky, J., 1980. The use of Markov random fields as models of texture. Computer Graphics and Image Processing, 12(4), pp. 357-370. https://doi.org/10.1016/0146-664X(80)90019-2
80. Chan, K. L., 1992. Fractal-based texture analysis. Singapore ICCS/ISITA92, Singapore, 102-106. https://doi.org/10.1109/ICCS.1992.254931
81.Dubuisson, M. P. and Dubes, R. C., 1994. Efficacy of fractal features in segmenting images of natural textures. Pattern Recognition Letters, 15(4), pp. 419-431. https://doi.org/10.1016/0167-8655(94)90091-4
82. Kaplan, L. M., 1999. Extended fractal analysis for texture classification and segmentation. IEEE Transactions on Image Processing, 8(11), pp. 1572-1585. https://doi.org/10.1109/83.799885
83.Bu, H. G., Wang, J. and Huang, X. B., 2009. Fabric defect detection based on multiple fractal features and support vector data description. Engineering Applications of Artificial Intelligence, 22(2), pp. 224-235. https://doi.org/10.1016/j.engappai.2008.05.006
84. Bu, H. G., Huang, X. B., Wang, J. and Chen, X., 2010. Detection of fabric defects by auto-regressive spectral analysis and support vector data description. Textile Research Journal, 80(7), pp. 579-589. https://doi.org/10.1177/0040517509340599
85. Mao, J., and Jain, A. K., 1992. Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition, 25(2), pp .173-188. https://doi.org/10.1016/0031-3203(92)90099-5
86. Choy S. K. and Tong C. S., 2007. Supervised texture classification using characteristic generalized gaussian density. Journal of Mathematical Imaging and Vision, 29(1), pp. 35-47. https://doi.org/10.1007/s10851-007-0023-8
87. Du, H., Jin, X. and Willis, P. J., 2016. Two-level joint local laplacian texture filtering. The Visual Computer, 32(12), pp. 1537-1548. https://doi.org/10.1007/s00371-015-1138-3
88.Hivarinen A., Hurri J. and Hoyer P.O., 2009. Linear Filters and Frequency Analysis. Natural Image Statistics a Probabilistic Approach to Early Computational Vision, Springer London, pp. 25-49. https://doi.org/10.1007/978-1-84882-491-1_2
89.Gilboa, G., 2014. A total variation spectral framework for scale and texture analysis. SIAM Journal on Imaging Sciences, 7(4), pp. 1937-1961. https://doi.org/10.1137/130930704
90. Habib, H. A., Yousaf, M. H. and Mohibullah, M., 2004. Modified laws energy descriptor for inspection of ceramic tiles. National Conference on Emerging Technologies, 138-140.
91. Virmani J., Kumar V., Kalra N. and Khandelwal N., 2013. SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. Journal of Digital Imaging, 26(3), pp. 530-543. http://doi.org/10.1007/s10278-012-9537-8
92. Laine A. and Fan J., 1993. Texture classification by wavelet packet signature. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), pp. 1186-1191. https://doi.org/10.1109/34.244679
93.Arivazhagan S. and Ganesan L., 2003. Texture classification using wavelet transform. Pattern Recognition Letters, 24(9-10), 1513-1521. https://doi.org/10.1016/S0167-8655(02)00390-2
94. Wang Z. and Yong J., 2008. Texture analysis and classification with linear regression model based on wavelet transform. IEEE Transaction on Image Processing, 17(8), pp. 1421-1430. https://doi.org/10.1109/TIP.2008.926150
95. Ngan H. Y., Pang G. K., Yung S. P. and Ngan M. K., 2005. Wavelet based methods on patterned fabric defect detection. Pattern Recognition, 38(4), pp. 559-576. https://doi.org/10.1016/j.patcog.2004.07.009
96. Qiao, L. H., Guo, W., Yuan, W. T. and Peng, L., 2009. Texture analysis based on bidimensional empirical mode decomposition and quaternions. International Conference on Wavelet Analysis and Pattern Recognition, Baoding, China, 84-90. https://doi.org/10.1109/ICWAPR.2009.5207477
97. Virmani, J., Kumar, V., Kalra, N. and Khandelwal, N., 2013. SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. Journal of Digital Imaging, 26(3), 530-543. https://doi.org/10.1007/s10278-012-9537-8
98. Bodnarova, A., Bennamoun, M. and Latham, S., 2002. Optimal Gabor filters for textile flaw detection. Pattern Recognition, 35(12), 2973-2991. https://doi.org/10.1016/S0031-3203(02)00017-1
99. Galasso, F. and Lasenby, J., 2009. Fourier analysis and gabor filtering for texture analysis and local reconstruction of general shapes. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, pp. 2342-2349. https://doi.org/10.1109/CVPR.2009.5206591
100.Turner, M. R., 1986. Texture discrimination by Gabor functions. Biological Cybernetics, 55(2), pp. 71-82. https://doi.org/10.1007/BF00341922
101. Simoncelli E. and Farid H., 1996. Steerable wedge filters for local orientation analysis. IEEE Transactions on Image Processing, 5(9), 1-10. https://doi.org/10.1109/83.535851 ‏‏‏
102.Tsai D. and Huang T., 2003. Automated surface inspection for statistical textures. Image and Vision Computing, 21(4), pp. 307–323. https://doi.org/10.1016/S0262-8856(03)00007-6
103. Bennamoun, M. and Bodnarova, A., 2003. Digital image processing techniques for automatic textile quality control. Systems Analysis Modelling Simulation, 43(11), 1581-1614.https://doi.org/10.1080/0232929032000115083
104.Bodnarova, A., Bennamoun, M. and Latham, S., 2002. Optimal Gabor filters for textile flaw detection. Pattern Recognition, 35(12), pp. 2973-2991.‏ https://doi.org/10.1016/S0031-3203(02)00017-1
105. Campbell, J. G. and Murtagh, F. D., 1998. Automatic visual inspection of woven textiles using a two-stage defect detector. Optical Engineering, 37(9), pp. 2536-2542. https://doi.org/10.1117/1.601692
106. Scharcanski, J., 2005. Stochastic texture analysis for monitoring stochastic processes in industry. Pattern Recognition Letters, 26(11), pp. 1701-1709. https://doi.org/10.1016/j.patrec.2005.01.017
107. Armi, L. and Fekri-Ershad, S., 2019. Texture image analysis and texture classification methods-A review. International Online Journal of Image Processing and Pattern Recognition, 2(1), pp. 1-29. https://doi.org/10.48550/arXiv.1904.06554
108. Chaurasia, K. and Garg, P. K., 2013. A brief review on texture analysis methods. Studies in Surveying and Mapping Science (SSMS), 1(2), pp. 1-9.‏
109.Tun´ak, M. and Linka, A., 2008. Directional Defects in Fabrics. Research Journal of Textile and Apparel, 12(2), pp. 13–22. https://doi.org/10.1108/RJTA-12-02-2008-B002
110. Liu, J. J. and MacGregor, J. F., 2006. Estimation and monitoring of product aesthetics: application to manufacturing of “engineered stone” countertops. Machine Vision and Applications, 16(6), pp. 374-383. https://doi.org/10.1007/s00138-005-0009-8
111. Nikoo, M. and Noorossana, R., 2013. Phase ii monitoring of nonlinear profile variance using wavelet. Quality and Reliability Engineering International, 29(7), pp. 1081–1089. https://doi.org/10.1002/qre.1460
112.Jin, J. and Shi, J., 2001. Automatic feature extraction of waveform signals for in-process diagnostic performance improvement. Journal of Intelligent Manufacturing, 12, 257–268. https://doi.org/10.1023/A:1011248925750
113. Suganyadevi, S., Seethalakshmi, V. and Balasamy, K., 2022. A review on deep learning in medical image analysis. International Journal of Multimedia Information Retrieval, 11(1), pp. 19-38. https://doi.org/10.1007/s13735-021-00218-1
114. Shamim, N., 2021. Machine Learning Based Feature Extraction of an Image: A Review. Algorithms for Intelligent Systems Proceedings of International Conference on Machine Intelligence and Data Science Applications, Springer, Singapore, pp. 369-383. https://doi.org/10.1007/978-981-33-4087-9_32
115.Bharati, M. H. and MacGregor, J. F., 1998. Multivariate image analysis for real-time process monitoring and control. Industrial and Engineering Chemistry Research, 37(12), pp. 4715-4724. https://doi.org/10.1021/ie980334l
116. Bharati, M. H., MacGregor, J. F. and Tropper, W., 2003. Softwood lumber grading through on-line multivariate image analysis techniques. Industrial and Engineering Chemistry Research, 42(21), pp. 5345-5353. https://doi.org/10.1021/ie0210560
117.Chen, S. and Wells, L., 2022. A multi‐image monitoring framework for statistical process control to improve manufacturing systems. Quality and Reliability Engineering International, 38(2), pp. 679-702. https://doi.org/10.1002/qre.3008
118. Menafoglio, A., Grasso, M., Secchi, P. and Colosimo, B. M., 2018. Profile monitoring of probability density functions via simplicial functional PCA with application to image data. Technometrics, 60(4), 497-510. https://doi.org/10.1080/00401706.2018.1437473
119. Yan, H., Paynabar, K. and Shi, J., 2014. Image-based process monitoring using low-rank tensor decomposition. IEEE Transactions on Automation Science and Engineering, 12(1), pp. 216-227. https://doi.org/10.1109/TASE.2014.2327029
120. Bisheh, M. N., Chang, S. I. and Lei, S., 2021. A layer-by-layer quality monitoring framework for 3D printing. Computers and Industrial Engineering, 157, 107314. https://doi.org/10.1016/j.cie.2021.107314
121.Lyu, Y., Chen, J. and Song, Z., 2019. Image-based process monitoring using deep learning framework. Chemometrics and Intelligent Laboratory Systems, 189, 8-17. https://doi.org/10.1016/j.chemolab.2019.03.008
122. Bui, A. T. and Apley, D. W., 2018. A monitoring and diagnostic approach for stochastic textured surfaces. Technometrics, 60(1), pp. 1-13.‏ https://doi.org/10.1080/00401706.2017.1302362
123. Bui, A. T. and Apley, D. W., 2018. Monitoring for changes in the nature of stochastic textured surfaces. Journal of Quality Technology, 50(4), pp. 363-378. https://doi.org/10.1080/00224065.2018.1507559
124. Grasso, M., Demir, A. G., Previtali, B. and Colosimo, B. M., 2018. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Robotics and Computer-Integrated Manufacturing, 49, 229-239. https://doi.org/10.1016/j.rcim.2017.07.001
125. Jamshidieini, B., and Fazaee, R., 2016. Detecting defective electrical components in heterogeneous infra-red images by spatial control charts. Infrared Physics and Technology, 76, 510-520. https://doi.org/10.1016/j.infrared.2016.04.013
126. Ferrer, A., 2007. Multivariate statistical process control based on principal component analysis (MSPC-PCA): some reflections and a case study in an autobody assembly process. Quality Engineering, 19(4), 311-325. https://doi.org/10.1080/08982110701621304
127. Liu, J. J. and MacGregor, J. F., 2007. On the extraction of spectral and spatial information from images. Chemometrics and Intelligent Laboratory Systems, 85(1), pp. 119-130. https://doi.org/10.1016/j.chemolab.2006.05.011
128. Bharati, M. H., Liu, J. J. and MacGregor, J. F., 2004. Image texture analysis: methods and comparisons. Chemometrics and Intelligent Laboratory Systems, 72(1), pp. 57-71. ‏https://doi.org/10.1016/j.chemolab.2004.02.005
129. Yu, H. and MacGregor, J.F., 2003. Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods. Chemometrics and Intelligent Laboratory Systems, 67(2), 125-144. https://doi.org/10.1016/S0169-7439(03)00065-0
130. Grasedyck, L., Kressner, D. and Tobler, C., 2013. A literature survey of lowrank tensor approximation techniques. GAMM-Mitteilungen, 36(1), pp. 53-78. https://doi.org/10.1002/gamm.201310004
131. Alaeddini, A., Motasemi, A. and Faruqui, S. H. A., 2018. A spatiotemporal outlier detection method based on partial least squares discriminant analysis and area Delaunay triangulation for image-based process monitoring. IISE Transactions, 50(2), 74-87. https://doi.org/10.1080/24725854.2017.1386336
132. Grasso, M., Laguzza, V., Semeraro, Q. and Colosimo, B. M., 2017. In-process monitoring of selective laser melting: spatial detection of defects via image data analysis. Journal of Manufacturing Science and Engineering, 139(5), 051001-16. https://doi.org/10.1115/1.4034715
133. Wang, K. and Tsung, F., 2005. Using Profile Monitoring Techniques for a Data-Rich Environment with Huge Sample Size. Quality and Reliability Engineering International, 21(7), pp. 677–688. https://doi.org/10.1002/qre.711
134. Wells, L. J., Megahed, F. M., Niziolek, C. B., Camelio, J. A. and Woodall, W. H., 2013. Statistical process monitoring approach for high-density point clouds. Journal of Intelligent Manufacturing, 24(6), 1267–1279. https://doi.org/10.1007/s10845-012-0665-2
135. Okhrin, Y., Schmid, W.and Semeniuk, I., 2020. New approaches for monitoring image data. IEEE Transactions on Image Processing, 30, 921-933. https://doi.org/10.1109/TIP.2020.3039389
136. ‏Huang, T., Wang, S., Yang, S. and Dai, W., 2021. Statistical process monitoring in a specified period for the image data of fused deposition modeling parts with consistent layers. Journal of Intelligent Manufacturing, 32(8), pp. 2181-2196. https://doi.org/10.1007/s10845-020-01628-4
137. Tsiamyrtzis, P., Grasso, M. L. G. and Colosimo, B. M., 2022. Image based statistical process monitoring via partial first order stochastic dominance. Quality Engineering, 34(1), 96-124. https://doi.org/10.1080/08982112.2021.2008974
138. Kaewsuwan, P., Yuangyai, C., Cheng, C. Y. and Janjarassuk, U., 2016. Image Analysis and High Dimensional Control Chart for Inspection of Sausage Color Homogeneity and Uniformity. International Journal of Food Engineering, 12(7), 625-635. https://doi.org/10.1515/ijfe-2015-0266
139. Bui, A. T. and Apley, D. W., 2022. Robust monitoring of stochastic textured surfaces. International Journal of Production Research, 60(16), pp. 5071-5086. https://doi.org/10.1080/00207543.2021.1949642
140. Colosimo, B. M. and Grasso, M., 2018. Spatially weighted PCA for monitoring video image data with application to additive manufacturing. Journal of Quality Technology, 50(4), 391-417. https://doi.org/10.1080/00224065.2018.1507563
141. Grasso, M. and Colosimo, B. M., 2019. A statistical learning method for image-based monitoring of the plume signature in laser powder bed fusion. Robotics and Computer-Integrated Manufacturing, 57, 103-115. https://doi.org/10.1016/j.rcim.2018.11.007
142. He, K., Zhang, M., Zuo, L. Alhwiti, T. and Megahed, F. M., 2017. Enhancing the monitoring of 3D scanned manufactured parts through projections and spatiotemporal control charts. Journal of Intelligent Manufacturing, 28(4), 899-911. http://doi.org/10.1007/s10845-014-1025-1
143.He, K., Zhang, Q., and Hong, Y., 2019. Profile monitoring based quality control method for fused deposition modeling process. Journal of Intelligent Manufacturing, 30(2), 947-958. https://doi.org/10.1007/s10845-018-1424-9
144. Jiang, B. C. and Jiang, S. J., 1998. Machine vision based inspection of oil seals. Journal of Manufacturing Systems, 17(3), 159-166. https://doi.org/10.1016/S0278-6125(98)80058-7
145. Khanzadeh, M., Tian, W., Yadollahi, A., Doude, H. R., Tschopp, M. A. and Bian, L., 2018. Dual process monitoring of metal-based additive manufacturing using tensor decomposition of thermal image streams. Additive Manufacturing, 23, 443-456. https://doi.org/10.1016/j.addma.2018.08.014
146. Knight, A. C. and Williams, E. D., 1992. An evaluation of cusum analysis and control charts applied to quantitative gamma-camera uniformity parameters for automated quality control. European Journal of Nuclear Medicine, 19,125-130. https://doi.org/10.1007/BF00184128
147. Lin, H. D., 2007. Automated visual inspection of ripple defects using wavelet characteristic based multivariate statistical approach. Image and Vision Computing, 25(11), 1785-1801. https://doi.org/10.1016/j.imavis.2007.02.002
148. Lin, H. D., 2007. Computer-aided visual inspection of surface defects in ceramic capacitor chips. Journal of Materials Processing Technology, 189(1-3), 19-25. https://doi.org/10.1016/j.jmatprotec.2006.12.051
149. Lu, C. J. and Tsai, D. M., 2005. Automatic defect inspection for LCDs using singular value decomposition. The International Journal of Advanced Manufacturing Technology, 25(1), pp. 53-61. https://doi.org/10.1007/s00170-003-1832-6
150. Lyu, J. and Chen, M., 2009. Automated Visual Inspection Expert System for Multivariate Statistical Process Control Chart. Expert Systems with Applications, 36(3), 5113–5118. https://doi.org/10.1016/j.eswa.2008.06.047
151. Armingol, J. M., Otamendi, J., De La Escalera, A., Pastor, J. M. and Rodriguez, F. J., 2003. Statistical pattern modeling in vision-based quality control systems. Journal of Intelligent and Robotic Systems, 37(3), 321-336. ‏https://doi.org/10.1080/00224065.2011.11917848
152. Nembhard, H. B., Ferrier, N. J., Osswald, T. A. and Sanz-Uribe, J. R., 2003. An Integrated Model for Statistical and Vision Monitoring in Manufacturing Transitions. Quality and Reliability Engineering International, 19(6), 461–476. https://doi.org/10.1002/qre.517
153.Seifi, S. and Noorossana, R., 2023. An Integrated Statistical Process Monitoring and Fuzzy Transformation Approach to Improve Process Performance via Image Data. Arabian Journal for Science and Engineering, 1-16. https://doi.org/10.1007/s13369-023-08059-2
154. Tan, J., Chang, Z. and Hsieh, F., 1996. Implementation of an Automated Real-Time Statistical Process Controller. Journal of Food Process Engineering, 19(1), 49–61. https://doi.org/10.1111/j.1745-4530.1996.tb00380.x
155.Tong, L.-I. Wang, C.-H. And Huang, C.-L., 2005. Monitoring Defects in IC Fabrication Using a Hotelling T2 Control Chart. IEEE Transactions on Semiconductor Manufacturing, 18(1), pp. 140–147. https://doi.org/10.1109/TSM.2004.836659
156. Xia, W. and Breen, S. L., 2018. Image registration assessment in radiotherapy image guidance based on control chart monitoring. Journal of Medical Imaging, 5(2), pp. 021221-021221. ‏ https://doi.org/10.1117/1.JMI.5.2.021221
157. Horst, R. L. and Negin, M., 1992. Vision System for HighResolution Dimensional Measurements and on-Line Inspection: Web Process Application. IEEE Transactions on Industrial Applications, 28(4), pp. 993–997. https://doi.org/10.1109/28.148468
158. Jia, Q., Zhang, Y. and Chen, W., 2018. Image-based process monitoring using projective nonnegative-tensor factorization. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2018.2833027
159.Fieguth, P., 2010. Statistical Image Processing and Multidimensional Modeling. New York, NY: Springer. https://doi.org/10.1007/978-1-4419-7294-1