یک رویکرد نظریه بازی برای قیمت‌گذاری در یک زنجیره تأمین پایدار با در نظر گرفتن مداخلات دولتی و اثر بازگشتی آب: یک مطالعه موردی محصولات غذایی از ایران

نوع مقاله : پژوهشی

نویسندگان

ایران، اصفهان، دانشگاه صنعتی اصفهان، دانشکده مهندسی صنایع و سیستم ها

چکیده

در این تحقیق با توجه به کمبود آب در جهان و اهمیت آلودگی زیست‌محیطی فاضلاب، به موضوع آب و تصفیه فاضلاب در زنجیره تأمین پرداخته شده است. پرداخت سوبسید دولتی برای تشویق تولیدکننده به تصفیه فاضلاب پیشنهاد شده است. تصفیه فاضلاب و فروش فاضلاب تصفیه‌شده برای استفاده مجدد منجر به ایجاد اثر بازگشتی حاصل از افزایش کارایی آب می‌شود که میزان مصرف آب تازه را برای تولید بالا می‌برد. با توجه به نقش همزمان دولت و تولیدکننده در این زمینه و تأثیر تصمیمات آن‌ها روی هم، رویکرد نظریه بازی برای قیمت‌گذاری محصول سبز استفاده شده است. تحلیل نتایج و حل یک مثال واقعی از صنعت لبنیات ایران نشان داد که با توجه به هدف دولت برای کاهش آلودگی زیست‌محیطی و کاهش مصرف آب در بخشی که پساب تصفیه‌شده استفاده می‌شود، معمولا تصفیه فاضلاب برای هر دو بازیکن دولت و تولیدکننده، سود بیشتری نسبت به تصفیه نکردن فاضلاب دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Game-Theoretic Approach for Pricing in a Sustainable Supply Chain Considering Governmental Intervention and Water Rebound Effect: A Case Study of Iranian Food Products

نویسندگان [English]

  • Zahra Rezaei
  • Naser Mollaverdi Isfahani
  • Morteza Rasti Barzoki
Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

Escalating freshwater depletion and contamination driven by anthropogenic activities significantly threaten global water accessibility, jeopardizing food security, environmental integrity, and economic prosperity. The dearth of water resources worldwide and the significance of the adverse effects of wastewater pollution on the environment have promoted the discussion of water and wastewater treatment in the supply chain in this research. A subsidy has been proposed to encourage producers to treat wastewater to create a sustainable supply chain. The government will determine the subsidy. Wastewater generated during the production process undergoes treatment and is subsequently marketed for reuse within the supply chain. Wastewater treatment coupled with the reuse of treated wastewater in the supply chain effectively reduces freshwater consumption. Subsequently, the green manufacturer determines the selling price of each green product unit by considering the cost of wastewater treatment, the rise in fresh water consumption due to the rebound effect, and the impact of the amount of government subsidy for wastewater treatment. Given the concurrent roles of the government and the green producer within this domain and the impact of their decisions on each other, the game theory approach has been employed for the first time for pricing the green product under the mentioned conditions. This holistic approach offers a more realistic appraisal of freshwater consumption in production and paves the way for formulating effective water management strategies towards sustainable production. In this study, the designed game has been solved under two structures, namely Nash and Stackelberg. A parametric analysis of the parameters of the problem is conducted. A real-life case study from the food industry of Iran is solved. The analysis of the results revealed that wastewater treatment for both the government and the green producer as players in both structures generally yield higher profits than not treating wastewater.

کلیدواژه‌ها [English]

  • Sustainable Supply Chain
  • Water Rebound Effect
  • Pricing
  • Game theory
1. World Commission on Environment and
Development., 1987. Our Common Future. Oxford:
Oxford University Press.
2. Shrivastava, P., 1995. The role of corporations in
achieving ecological sustainability. Academy of
Management Review, 20, pp. 936-960.
https://doi.org/10.5465/amr.1995.9512280026.
3. Cetinkaya, B., Cuthbertson, R., Ewer, G., KlaasWissing, T., Piotrowicz, W. and Tyssen, C., 2011.
Sustainable supply chain management: practical
ideas for moving towards best practice, Springer
Science & Business Media.
https://doi.org/10.1007/978-3-642-12023-7.
4. Zhou, Y. and Qin, F., 2015. A review of sustainable
supply chain management based on game theory.
International Conference on Advanced
شکل .12 نمودار مربوط به روند تغییرات تقاضاهای تعادلی
تولیدکننده در ساختار نش و استکلبرگ نسبت به تغییرات pw.
شکل .13 نمودار مربوط به روند تغییرات سودهای تعادلی دولت و
تولیدکننده در ساختار نش و استکلبرگ نسبت به تغییراتpw .
یک رویکرد نظریه بازی برای قیمتگذاری در یک زنجیره تأمین پایدار با در نظر گرفتن مداخالت دولتی و اثر بازگشتی آب: یک مطالعه موردی محصوالت غذایی از ایران زهرا رضائی و همکاران
120
Manufacturing and Industrial Application. Atlantis
Press, pp. 18-22. https://doi.org/10.2991/icamia15.2015.5.
5. Kovács, G. and Illés, B., 2019. Development of an
optimization method and software for optimizing
global supply chains for increased efficiency,
competitiveness, and sustainability. Sustainability,
11. https://doi.org/10.3390/su11061610.
6. Rajeev, A., Pati, R. K., Padhi, S. S. and Govindan, K.,
2017. Evolution of sustainability in supply chain
management: A literature review. Journal of cleaner
production, 162, pp. 299-314.
https://doi.org/10.1016/j.jclepro.2017.05.026.
7. Kovács, G. and Kot, S., 2016. New logistics and
production trends as the effect of global economy
changes. Polish Journal of Management Studies, 14,
pp. 115-126.
8. Chen, J.-Y., Dimitrov, S. and Pun, H., 2019. The
impact of government subsidy on supply Chains’
sustainability innovation. Omega, 86, pp. 42-58.
https://doi.org/10.1016/j.omega.2018.06.012.
9. Mahmoudi, R. and Rasti-Barzoki, M., 2018.
Sustainable supply chains under government
intervention with a real-world case study: An
evolutionary game theoretic approach. Computers &
Industrial Engineering, 116, pp. 130-143.
https://doi.org/10.1016/j.cie.2017.12.028.
10. Xing, G., Xia, B. and Guo, J., 2019. Sustainable
cooperation in the green supply chain under
financial constraints. Sustainability, 11, 5977.
https://doi.org/10.3390/su11215977.
11. Falkenmark, M., Rockström, J. and Karlberg, L.,
2009. Present and future water requirements for
feeding humanity. Food Security, 1, pp. 59-69.
https://doi.org/10.1007/s12571-008-0003-x.
12. Ercin, E., 2018. Overuse of Water Resources: Water
Stress and The Implications for Food and
Agriculture. 10.1016/B978-0-08-100596-5.21998-
7.
13. De Fraiture, C. and Wichelns, D., 2010. Satisfying
future water demands for agriculture. Agricultural
Water Management, 97, pp. 502-511.
https://doi.org/10.1016/j.agwat.2009.08.008.
14. Siyal, A. W., Gerbens-Leenes, P. and Vaca-Jiménez,
S., 2023. Freshwater competition among
agricultural, industrial, and municipal sectors in a
water-scarce country. Lessons of Pakistan's fiftyyear development of freshwater consumption for
other water-scarce countries. Water Resources and
Industry, 29, 100206.
https://doi.org/10.1016/j.wri.2023.100206.
15. Dai, Z., Aqlan, F., Zheng, X. and Gao, K., 2018. A
location-inventory supply chain network model
using two heuristic algorithms for perishable
products with fuzzy constraints. Computers &
Industrial Engineering, 119, pp. 338-352.
https://doi.org/10.1016/j.cie.2018.04.007.
16. Brar, A., Kumar, M. and Pareek, N., 2019.
Comparative appraisal of biomass production,
remediation, and bioenergy generation potential of
microalgae in dairy wastewater. Frontiers in
Microbiology, 10, 443920.
https://doi.org/10.3389/fmicb.2019.00678.
17. Choi, H.-J., 2016. Dairy wastewater treatment using
microalgae for potential biodiesel application.
Environmental Engineering Research, 21, pp. 393-
400. https://doi.org/10.4491/eer.2015.151.
18. Chokshi, K., Pancha, I., Ghosh, A. and Mishra, S.,
2016. Microalgal biomass generation by
phycoremediation of dairy industry wastewater: An
integrated approach towards sustainable biofuel
production. Bioresource Technology, 221, pp. 455-
460. https://doi.org/10.1016/j.biortech.2016.09.070.
19. Sharshir, S. W., Algazzar, A. M., Elmaadawy, K.,
Kandeal, A., Elkadeem, M., Arunkumar, T., Zang, J.
and Yang, N., 2020. New hydrogel materials for
improving solar water evaporation, desalination and
wastewater treatment: A review. Desalination, 491,
114564.
https://doi.org/10.1016/j.desal.2020.114564.
20. Slavov, A. K., 2017. Dairy wastewaters–general
characteristics and treatment possibilities–a review.
Food Technol. Biotechnol, 55, 14.
http://dx.doi.org/10.17113/ftb.55.01.17.4520.
21. Wang, C., Jiang, L., Hu, M., Wang, C., Peng, Y.,
Zhang, S. and Qi, W., 2023. Long-term performance
of ZVI-stimulating anaerobic/aerobic system-PEI
modified ceramic membrane SMBR in reusing food
wastewater for irrigation: An industrial project and
microbial community shift. Journal of Water
Process Engineering, 56, 104261.
https://doi.org/10.1016/j.jwpe.2023.104261.
22. He, J., Xia, S., Li, W., Deng, J., Lin, Q. and Zhang,
L., 2023. Resource recovery and valorization of food
wastewater for sustainable development: An
overview of current approaches. Journal of
Environmental Management, 347, 119118.
https://doi.org/10.1016/j.jenvman.2023.119118.
23. Al-Hazmi, H. E., Mohammadi, A., Hejna, A.,
Majtacz, J., Esmaeili, A., Habibzadeh, S., Saeb, M.
R., Badawi, M., Lima, E. C. and Mąkinia, J., 2023.
Wastewater treatment for reuse in agriculture:
مهندسی صنایع و مدیریت شریف، )زمستان 1403( ، دوره ی ،40 شماره ی ،2 صص. 125-111 ، )پژوهشی(
121
Prospects and challenges. Environmental Research,
236. https://doi.org/10.1016/j.envres.2023.116711.
24. Kothari, R., Pathak, V. V., Kumar, V. and Singh, D.,
2012. Experimental study for growth potential of
unicellular alga Chlorella pyrenoidosa on dairy
waste water: an integrated approach for treatment
and biofuel production. Bioresource Technology,
116, pp. 466-470.
https://doi.org/10.1016/j.biortech.2012.03.121.
25. Sekar, A. D., Jayabalan, T., Muthukumar, H.,
Chandrasekaran, N. I., Mohamed, S. N. and
Matheswaran, M., 2019. Enhancing power
generation and treatment of dairy waste water in
microbial fuel cell using Cu-doped iron oxide
nanoparticles decorated anode. Energy, 172, pp.
173-180.
https://doi.org/10.1016/j.energy.2019.01.102.
26. Yaakob, Z., Ali, E., Zainal, A., Mohamad, M. and
Takriff, M. S., 2014. An overview: biomolecules
from microalgae for animal feed and aquaculture.
Journal of Biological Research-Thessaloniki, 21,
pp. 1-10. https://doi.org/10.1186/2241-5793-21-6.
27. Najar-Almanzor, C. E., Velasco-Iglesias, K. D.,
Nunez-Ramos, R., Uribe-Velázquez, T., SolisBañuelos, M., Fuentes-Carrasco, O. J., Chairez, I.,
García-Cayuela, T. and Carrillo-Nieves, D., 2023.
Microalgae-assisted green bioremediation of foodprocessing wastewater: A sustainable approach
toward a circular economy concept. Journal of
Environmental Management, 345, 118774.
https://doi.org/10.1016/j.jenvman.2023.118774.
28. Gramegna, G., Scortica, A., Scafati, V., Ferella, F.,
Gurrieri, L., Giovannoni, M., Bassi, R., Sparla, F.,
Mattei, B. and Benedetti, M., 2020. Exploring the
potential of microalgae in the recycling of dairy
wastes. Bioresource Technology Reports, 12,
100604.
https://doi.org/10.1016/j.biteb.2020.100604.
29. Haddon, A., Rapaport, A., Roux, S. and Harmand, J.,
2023. Model based optimization of fertilization with
treated wastewater reuse. Advances in Water
Resources, 181, 104561.
https://doi.org/10.1016/j.advwatres.2023.104561.
30. Hosney, H., Tawfik, M. H., Duker, A. and Van Der
Steen, P., 2023. Prospects for treated wastewater
reuse in agriculture in low-and middle-income
countries: Systematic analysis and decision-making
trees for diverse management approaches.
Environmental Development, 46, 100849.
https://doi.org/10.1016/j.envdev.2023.100849.
31. Shrivastava, V., Ali, I., Marjub, M. M., Rene, E. R.
and Soto, A. M. F., 2022. Wastewater in the food
industry: Treatment technologies and reuse
potential. Chemosphere, 293, 133553.
https://doi.org/10.1016/j.chemosphere.2022.133553
32. Waldron, K. W., 2009. Handbook of Waste
Management and Co-Product Recovery in Food
Processing, Elsevier.
33. Li, K., Liang, S., Liang, Y., Feng, C., Qi, J., Xu, L.
and Yang, Z., 2021. Mapping spatial supply chain
paths for embodied water flows driven by food
demand in China. Science of the Total Environment,
786, 147480.
https://doi.org/10.1016/j.scitotenv.2021.147480.
34. Ummalyma, S. B. and Sukumaran, R. K., 2014.
Cultivation of microalgae in dairy effluent for oil
production and removal of organic pollution load.
Bioresource Technology, 165, pp. 295-301.
https://doi.org/10.1016/j.biortech.2014.03.028.
35. Aootu, F. N., 2019. Overview of global dairy market
develop ments in 2018. Dairy Market Review.
https://openknowledge.fao.org/handle/20.500.1428
3/ca3879en.
36. Al-Saidi, M., Das, P. and Saadaoui, I., 2021. Circular
economy in basic supply: Framing the approach for
the water and food sectors of the Gulf cooperation
council countries. Sustainable Production and
Consumption, 27, pp. 1273-1285.
https://doi.org/10.1016/j.spc.2021.03.004.
37. Mahmoumgonbadi, A., 2023. Strategic Planning of
Circular Supply Chains with Multiple Downgraded
Market Levels: A Methodological Proposal.
University of Sheffield.
38. Jafarnejad, E., Makui, A., Hafezalkotob, A. and
Aghsami, A., 2024. Governance intervention
policies in the production competition of biofuels
and fossil fuels: a pathway to sustainable
development. Operations Management Research,
pp. 1-23. https://doi.org/10.1007/s12063-024-
00441-z.
39. Safarzadeh, S., Rasti-Barzoki, M. and Hejazi, S. R.,
2020. A review of optimal energy policy instruments
on industrial energy efficiency programs, rebound
effects, and government policies. Energy Policy,
139, 111342.
https://doi.org/10.1016/j.enpol.2020.111342.
40. Kong, L., Hu, G., Mu, X., Li, G. and Zhang, Z., 2023.
The energy rebound effect in households: Evidence
from urban and rural areas in Beijing. Applied
Energy, 343, 121151.
https://doi.org/10.1016/j.apenergy.2023.121151.
یک رویکرد نظریه بازی برای قیمتگذاری در یک زنجیره تأمین پایدار با در نظر گرفتن مداخالت دولتی و اثر بازگشتی آب: یک مطالعه موردی محصوالت غذایی از ایران زهرا رضائی و همکاران
122
41. Sonnberger, M. and Gross, M., 2018. Rebound
effects in practice: an invitation to consider rebound
from a practice theory perspective. Ecological
Economics, 154, pp. 14-21.
https://doi.org/10.1016/j.ecolecon.2018.07.013.
42. York, R. and Mcgee, J. A., 2016. Understanding the
Jevons paradox. Environmental Sociology, 2, pp. 77-
87.
https://doi.org/10.1080/23251042.2015.1106060.
43. Du, K., Liu, X. and Zhao, C., 2023. Environmental
regulation mitigates energy rebound effect. Energy
Economics, 125, 106851.
https://doi.org/10.1016/j.eneco.2023.106851.
44. Safarzadeh, S., Rasti-Barzoki, M., Hejazi, S. R. and
Piran, M. J., 2020. A game theoretic approach for
the duopoly pricing of energy-efficient appliances
regarding innovation protection and social welfare.
Energy, 200, 117517.
https://doi.org/10.1016/j.energy.2020.117517.
45. Lou, Z., Lou, X. and Dai, X., 2020. Game-theoretic
models of green products in a two-echelon dualchannel supply chain under government subsidies.
Mathematical Problems in Engineering.
https://doi.org/10.1155/2020/2425401.
46. Song, J., Guo, Y., Wu, P. and Sun, S., 2018. The
agricultural water rebound effect in China.
Ecological Economics, 146, pp. 497-506.
https://doi.org/10.1016/j.ecolecon.2017.12.016.
47. Berbel, J., Gutiérrez-Martín, C. and Expósito, A.,
2018. Impacts of irrigation efficiency improvement
on water use, water consumption and response to
water price at field level. Agricultural Water
Management, 203, pp. 423-429.
https://doi.org/10.1016/j.agwat.2018.02.026.
48. Manteghi, Y., Arkat, J., Mahmoodi, A. and
Farvaresh, H., 2021. Competition and cooperation in
the sustainable food supply chain with a focus on
social issues. Journal of Cleaner Production, 285,
124872.
https://doi.org/10.1016/j.jclepro.2020.124872.
49. Xie, G., Yue, W., Liu, W. and Wang, S., 2012. Risk
based selection of cleaner products in a green supply
chain. Pacific Journal of Optimization, 8, pp. 473-
484.
50. Bani Taba, S. M. R., 2021. A sharp decrease in per
capita consumption of dairy products in Iran /
increasing demand for yogurt-based dairy products
[Online]. Moj News Agency. Available:
https://www.mojnews.com/n/1vD9. [In Persian].
51. Asr Iran News Analysis, W., 2016. Survey of yogurt
consumption per capita in Iran and the world and the
role of Seven yogurt [Online]. Available:
https://www.asriran.com/001xa9. [In Persian].
52. Regional Water Company of Qazvin., 2020. Tariff
rate for water consumption in 2020 [Online].
Available: https://www.qzrw.ir/st/400. [In Persian].
53. Eskenasi, H. and Alamatian, E., 2015. Investigating
the amount of water consumption and the
conversion rate of water to wastewater in industry (a
case study of food industry in Razavi Khorasan
province). National conference on civil engineering
and needs-oriented research.
https://civilica.com/doc/461175. [In Persian].
54. Iran Water Industry., 2022. The cost of supplying
each cubic meter of water from deep sources is 2.5
euros [Online]. Bazar. Available:
www.tahlilbazaar.com/x3mDG. [In Persian].
55. Farsi Rad, S., 2020. Iran Water and Wastewater
Treatment Company (The former Fenoman)
[Online]. Available: https://tavfi.ir/. [In Persian].
56. Ghorbani, F., 2019. Water consumption reduction
project in Kale Amol dairy factory [Online].
Specialized Meeting and Exhibition of Water
Scarcity Adaptation. First National Dehydration
Adaptation Event, Experiences in the Industry
Sector.
https://www.mccima.com/files/agriculture/%d8%b
5%d9%86%d8%a7%db%8c%d8%b9.pdf. [In
Persian].
57. Bani Taba, S. M. R., 2022. The chaotic state of the
dairy products market/ an economic expert: the per
capita consumption of dairy products by Iranians has
reached below 70 kg [Online]. Etemad Online.
Available:
https://www.etemadonline.com/tiny/news-625518.
[In Persian].
58. Hasanpour, B., 2019. Calculation of water price and
sewage disposal cost [Online]. Water and
Wastewater Company: East Azarbaijan Province.
Available: https://abfaazarbaijan.ir/?pageid=0. [In
Persian].
59. Abnikco. 2021., Dairy wastewater treatment
[Online]. Nik Pouyan Alborz Water Treatment
Engineering Company. Available:
https://abnikco.com/. [In Persian].
60. Mehr News Agency., 2019. The specific goods and
services that are exempt from value added tax have
been identified. [Online]. Available:
mehrnews.com/xR2J7. [In Persian].