بهینه‌سازی تخصیص تخت بیمارستانی با رویکرد ترکیبی شبیه‌سازی و تصمیم‌گیری چندمعیاره ی فازی

نوع مقاله : یادداشت فنی

نویسندگان

گروه مهندسی صنایع، دانشکده‌ی‌ برق و کامپیوتر، مجتمع آموزش عالی فنی و مهندسی اسفراین، اسفراین، ایران.

چکیده

تخصیص بهینه‌ی تخت بیمارستان از جمله مسائلی است که نقش مهمی در عملکرد مالی و درمانی بیمارستان دارد. در نوشتار حاضر، با استفاده از رویکرد شبیه‌سازی و درنظرگرفتن سیاست به اشتراک‌گذاری تخت بین بخش‌های مختلف بیمارستان، یک الگوریتم در شش گام توسعه داده شده است. معیارهای در نظر گرفته‌شده، شامل: درصد عدم پذیرش بیمار، استفاده از منبع، و طول صف در بخش‌های مختلف هستند. با توجه به ماهیت غیرقطعی‌بودن مسئله، به‌منظور رتبه‌بندی سناریوها از روش دیمتل فازی استفاده و بهترین سناریو از مجموع سناریوهای ایجادشده انتخاب شده است. سناریوهای مربوط به سطوح مختلف اشتراک‌گذاری، ارزیابی شده و بهترین سناریو و میزان درصد اشتراک‌گذاری تخت به‌دست آمده است. در بهترین سناریوی انتخابی، میزان چهار معیار اصلی انتخابی به ترتیب برابر با: 5/9%، 70%، 19، و 2/1 نفر به‌دست آمده است. مدیران بیمارستان می­توانند با استفاده از نتایج سناریوهای بهینه، عملکرد کلی واحد درمانی را بهبود بخشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Hospital Bed Allocation by a Hybrid Simulation-MCDM Approach

نویسندگان [English]

  • Sara Motevali haghighi
  • Ali Ghorbanian
Department of Industrial Engineering, Faculty of Electrical and Computer Engineering, Esfarayen University of Technology, Esfarayen, Iran
چکیده [English]

Hospitals are one of the key parts of the health system that are responsible for providing services to patients. The optimal allocation of hospital beds is one of the important issues that plays a significant role in the financial and clinical performance of hospitals. Therefore, in this article, an algorithm in six main steps, including data collection, simulation, scenario definition, simulation model execution, calculation of the importance degree of output variables, and ranking of scenarios, has been developed using a computer simulation approach and considering the bed-sharing policy among different hospital departments. The main criteria considered in this study include patient rejection (PR), the percentage of resource utilization (RU), and the length of the queue (LQ). Due to the nature of uncertainty in the problem, a fuzzy DEMATEL method has been used for ranking scenarios. Finally, the best scenarios have been identified from the total scenarios considered, which can be taken into account by hospital managers in decision-making to improve the overall performance of their medical unit using optimal scenario assumptions. The presented algorithm has been investigated on a case study, and its results have been analyzed and reviewed. The considered case study hospital has two inpatient departments. The first department is designated for triage patients and first-type clinic patients, while the second department is for second-type clinic patients. In the conducted case study, the weights of each decision criterion are 0.33, 0.09, 0.27, and 0.30, respectively. A total of 36 scenarios have been defined for the case study. In the end, based on the developed model, scenario number 20 has been chosen as the best scenario. In this scenario, the percentage of patient rejection for triage is 9/5%, the resource utilization percentage is 70%, and the average number of people waiting in line for first and second-type clinic patients is 19.73 and 1.27, respectively.

کلیدواژه‌ها [English]

  • Optimization
  • resource allocation
  • hospital bed
  • computer simulation
  • multi-criteria decision making
1. Khalili, S., Ghodoosi, M. and Hasanpour, J., 2018. The optimal number of hospital beds under uncertainty: a costs management approach. Journal of Optimization in Industrial Engineering, 11(2), pp.129-138. DOI: 22094/joie.2017.542.43.
2. Wu, J., Chen, B., Wu, D., Wang, J., Peng, and Xu, X., 2020. Optimization of Markov queuing model in hospital bed resource allocation. Journal of Healthcare Engineering, 2020(1), pp.1-12. DOI: https://doi.org/10.1155/2020/6630885.
3. Rathore, R., 2023. A Study of bed occupancy management in the healthcare system using the M/M/C Queue and probability. International Journal for Global Academic Scientific Research, 2(1), pp.01-06. DOI: https://doi.org/10.55938/ijgasr.v2i1.36.
4. Bahadori, M., Teymourzadeh, E. and Kazemi, R., 2017. Mathematical modeling for bed allocation in a military hospital. Journal of Military Medicine, 19(4), pp.390-399. DOI: http://eprints.bmsu.ac.ir/id/eprint/211. [In Persian].
5. Xue, Q., Fan, Y., Wang, J., Kuang, Y. and Chen, Y., 2022. An Optimization Model and Computer Simulation for Allocation Planning of Hospital Bed Resources. Mathematical Problems in Engineering, 2022(1), pp.1-9 DOI: https://doi.org/10.1155/2022/3469641.
6. Pishnamazzadeh, M., Sepehri, M. M. and Ostadi, B., 2023. Inpatient bed management considering collaboration strategy to enhance hospital resilience. Journal of Industrial Systems Engineering, 15(2), pp.1-19. DOI: 1001.1.17358272.2023.15.2.1.5.
7. Korzebor, M. and Nahavandi, N., 2024. A bed allocation model for pandemic situation considering general demand: A case study of Iran. Risk Analysis, 44(11), pp.2660-2676. DOI: https://doi.org/10.1111/risa.14339.
8. Hosseinzadeh, S., Ketabi, S., Atighehchian, A. and Nazari, R., 2024. Hospital bed capacity management during the COVID-19 outbreak using system dynamics: A case study in Amol public hospitals, Iran. International Journal of Healthcare Management, 17(1), pp.63-75. DOI: https://doi.org/10.1080/20479700.2022.2149083.
9. Yu, H., Shen, T., and Zhong, L., 2024. Optimizing hospital bed allocation for coordinated medical efficiency and quality improvement. Journal of Combinatorial Optimization, 48(4), 32-42. DOI: https://doi.org/10.1007/s10878-024-01210-1.
10. Li, Z., Yu, H. and Zhou, Z., 2024. Scheduling of elective operations with coordinated utilization of hospital beds and operating rooms. Journal of Combinatorial Optimization, 47(5), p.75.DOI: https://doi.org/10.1007/s10878-024-01167-1.
11. Azadeh, A., Sepahi, M., Haghighi, S. M. and Benchmarking, 2013. An integrated simulation-DEA approach to improve quality care of medical centres. International Journal of Process Management, 3(3), pp.352-370. DOI: https://doi.org/10.1504/IJPMB.2013.058160.
12. Wang, X., Gong, X., Geng, N., Jiang, Z. and Zhou, L., 2020. Metamodel-based simulation optimisation for bed allocation. International Journal of Production Research, 58(20), pp.6315-6335. DOI: https://doi.org/10.1080/00207543.2019.1677962.
13. He, L., Madathil, S. C., Oberoi, A., Servis, G. and Khasawneh, M., 2019. A systematic review of research design and modeling techniques in inpatient bed management. Computers Industrial Engineering, 127(1), pp.451-466 .DOI: https://doi.org/10.1016/j.cie.2018.10.033.
14. Wu, X., Xu, R., Li, J. and Khasawneh, M., 2019. A simulation study of bed allocation to reduce blocking probability in emergency departments: A case study in China. Journal of the Operational Research Society, 70(8), pp.1376-1390. DOI: https://doi.org/10.1080/01605682.2018.1506430.
15. Ghorbani, R., Shafagh, S. O., Nateghinia, S., Hajiesmaeli, M., Alibabaei, A. and Shafigh, N., 2021. Neuro-critical Care Unit Bed Allocation Optimization based on Hybrid Approach: Designing of Experiments and Simulation. Journal of Safety Promotion and Injury Prevention, 1), pp.9-17. DOI: https://doi.org/10.5812/archneurosci.64855 [In Persian].
16. Pourmahmoud, J. and Jafari, E., 2019. Goal programming for optimal allocation of hospital beds (case study: emergency department of Shahid Madani hospital in Tabriz). Journal of Operational Research In Its Applications, 16(1), pp.131-141. DOI: https://doi.org/10.33140/jcrr.02.01.01. [In Persian].
17. Torabipour, A., Zeraati, H., Mohammad, A., Rashidian, A., Sari, A. A. and Sarzaiem, M. R., 2016. Bed capacity planning using stochastic simulation approach in cardiac-surgery department of teaching hospitals, Tehran, Iran. Iranian Journal of Public Health, 45(9), p.1208. PMID: 27957466; PMCID: PMC5149475.
18. Zhou, L., Geng, N., Jiang, Z. and Wang, X., 2018. Multi-objective capacity allocation of hospital wards combining revenue and equity. Omega, 81(1), pp.220-233. DOI: https://doi.org/10.1016/j.omega.2017.11.005.
19. Hu, J., Hu, G., Cai, J., Xu, L. and Wang, Q., 2021. Hospital bed allocation strategy based on queuing theory during the covid-19 epidemic. Computers, Materials & Continua, 66(1), pp.793-803. DOI: https://doi.org/10.32604/cmc.2020.011110.
20. Vashishth, T. K., Chaudhary, S. and Sharma, V., Optimum Utilization of Bed Resources in Hospitals: A Stochastic Approach, in Artificial Intelligence-based Healthcare Systems: Springer, 2023, pp. 101-110. DOI:  https://doi.org/10.1007/978-3-031-41925-6_7.
21. Burdett, R. L., Corry, P., Spratt, B., Cook, D. and Yarlagadda, P., 2023. A stochastic programming approach to perform hospital capacity assessments. Plos One, 18(11), p.e0287980. DOI: https://doi.org/10.1371/journal.pone.0287980
22. Burdett, R. L., Corry, P., Yarlagadda, P., Cook, D., Birgan, S. and McPhail, S. M., 2023. A mathematical framework for regional hospital case mix planning and capacity appraisal. Operations Research Perspectives, 10(1), p.100261. DOI: https://doi.org/10.1016/j.orp.2022.100261.
23. Naeini, M. K., Elahi, Z. and Esfandabadi, A. M., 2021. Providing a model for the optimal allocation of hospital beds based on Markov chain approach (case study: Shiraz-Shahid-Faghihi Hospital). Quarterly Journal of Management Strategies in Health System, 6(1), pp.18-27. DOI: https://doi.org/10.18502/mshsj.v6i1.6505. [In persian].
24. Taghavi, A. and Monem, 2018. Increasing the efficiency of using CCU beds of hospitals through optimization and combination of genetic algorithm and imperialist competitive. Journal of Health and Biomedical Informatics, 4(4), pp.253-265. DOI: http://jhbmi.ir/article-1-258-en.html. [In persian].
25. Belciug, S. and Gorunescu, F., 2016. A hybrid genetic algorithm-queuing multi-compartment model for optimizing inpatient bed occupancy and associated costs. Artificial Intelligence in Medicine, 68(1), pp.59-69. DOI: https://doi.org/10.1016/j.artmed.2016.03.001.
26. Bekker, R., Koole, G. and Roubos, D., 2017. Flexible bed allocations for hospital wards. Health Care Management Science, 20(1), pp.453-466. DOI: https://doi.org/10.1007/s10729-016-9364-4.
27. E Oliveira, B., De Vasconcelos, J., Almeida, J. and Pinto, L., 2020. A simulation-optimisation approach for hospital beds allocation. International Journal of Medical Informatics, 141(1), p.104174. DOI: https://doi.org/10.1016/j.ijmedinf.2020.104174.
28. Aghaabdellahian, Z. and Bijari, M., 2020. Bed management considering bed-blocking and elective patient admissions using simulation optimisation. International Journal of Simulation Process Modelling, 15(3), pp.278-294. DOI: https://doi.org/10.1504/IJSPM.2020.107330.
29. Mohamed, I. and Hussein, R., 2021. A simulation optimisation approach for managing bed capacity in an intensive care unit. Journal of Information Knowledge Management, 20(1), p.2150001. DOI: https://doi.org/10.1142/S0219649221500015.
30. Wan, F., Fondrevelle, J., Wang, T. and Duclos, A., 2023. Two-stage multi-objective optimization for ICU bed allocation under multiple sources of uncertainty. Scientific Reports, 13(1), p.18925. DOI: https://doi.org/10.1038/s41598-023-45777-x.
31. Wu, X., Li, J. and Chu, C.-H., 2019. Modeling multi-stage healthcare systems with service interactions under blocking for bed allocation. European Journal of Operational Research, 278(3), pp.927-941. DOI: https://doi.org/10.1016/j.ejor.2019.05.004.
32. Sundararajan, N. and Terkar, R., 2022. A roadmap to improving productivity in a fastener manufacturing unit by process optimization using ARENA. Materials Today: Proceedings, 62(1), pp.1017-1025. DOI: https://doi.org/10.1016/j.matpr.2022.04.265.
33. Bentalha, B., Hmioui, A. and Alla, L., The global performance of a service supply chain: a simulation-optimization under arena. In The Proceedings of the Third International Conference on Smart City Applications, pp. 489-502.Springer. DOI: https://doi.org/10.1007/978-3-030-66840-2_37.
34. Sridhar, P., Vishnu, C. and Sridharan, R., 2021. Simulation of inventory management systems in retail stores: A case study. Materials Today: Proceedings, 47(1), pp.5130-5134. DOI: https://doi.org/10.1016/j.matpr.2021.05.314.
35. Bakhsh, A., 2020. Traffic simulation modeling for major intersection. Sakarya University Journal of Science, 24(1), pp.37-44. DOI:https://doi.org/10.16984/saufenbilder.490984.
36. Tavakoli, M., Tavakkoli-Moghaddam, R., Mesbahi, R., Ghanavati-Nejad, M. and Tajally, A., 2022. Simulation of the COVID-19 patient flow and investigation of the future patient arrival using a time-series prediction model: a real-case study. Medical Biological Engineering Computing, 60(4), pp.969-990. DOI: https://doi.org/10.1007/s11517-022-02525-z.
37. Sasanfar, S., Bagherpour, M. and Moatari-Kazerouni, A., 2020. Improving emergency departments: Simulation-based optimization of patients waiting time and staff allocation in an Iranian hospital. International Journal of Healthcare Management, 14(4), pp.1449-1456. DOI:https://doi.org/10.1080/20479700.2020.1765121.
38. Hejazi, T.-H., 2021. State-dependent resource reallocation plan for health care systems: A simulation optimization approach, Computers Industrial Engineering, 159(1), pp.107-502. DOI: https://doi.org/10.1016/j.cie.2021.107502.
39. Najibi, S. M., Lotfi, F., Kharazmi, E., Farhadi, P., Shojaei, P., Bastani, P. and Kavosi, Z., 2023. Identification and prioritization of indicators of hospital bed allocation in Iran. World Medical Health Policy, 15(4), pp.356-379. DOI: https://doi.org/10.1002/wmh3.550.
40. Shieh, J.-I., Wu, H.-H. and Huang, K.-K., 2010. A DEMATEL method in identifying key success factors of hospital service quality. Knowledge-Based Systems, 23(3), 277-282. DOI: https://doi.org/10.1016/j.knosys.2010.01.013.
41. Si, S.-L., You, X.-Y., Liu, H.-C., Huang, J. and health, p., 2017. Identifying key performance indicators for holistic hospital management with a modified DEMATEL approach, International Journal of Environmental Research, 14(8), p.934. DOI: https://doi.org/10.3390/ijerph14080934.
42. Jiang, S., Shi, H., Lin, W. and Liu, H.-C., 2020. A large group linguistic Z-DEMATEL approach for identifying key performance indicators in hospital performance management. Applied Soft Computing, 86(1), p.105900. DOI: https://doi.org/10.1016/j.asoc.2019.105900.
43. Roy, , Adhikary, K., Kar, S. and Pamucar, D., 2018. A rough strength relational DEMATEL model for analysing the key success factors of hospital service quality. Decision Making: Applications in Management, 1(1), pp.121-142. DOI: https://doi.org/10.31181/dmame1801121r.
44. Zhou, Q., Huang, W. and Zhang, Y., 2011. Identifying critical success factors in emergency management using a fuzzy DEMATEL method. Safety science, 49(2), pp.243-252. DOI: https://doi.org/10.1016/j.ssci.2010.08.005.
45. Zhou, F., Wang, X., Lim, M. K., He, Y. and Li, L., 2018. Sustainable recycling partner selection using fuzzy DEMATEL-AEW-FVIKOR: A case study in small-and-medium enterprises (SMEs). Journal of Cleaner Production, 196(1), pp.489-504. DOI: https://doi.org/10.1016/j.jclepro.2018.05.247.