1. Khalili, S., Ghodoosi, M. and Hasanpour, J., 2018. The optimal number of hospital beds under uncertainty: a costs management approach. Journal of Optimization in Industrial Engineering, 11(2), pp.129-138. DOI: 22094/joie.2017.542.43.
2. Wu, J., Chen, B., Wu, D., Wang, J., Peng, and Xu, X., 2020. Optimization of Markov queuing model in hospital bed resource allocation.
Journal of Healthcare Engineering, 2020(1), pp.1-12. DOI:
https://doi.org/10.1155/2020/6630885.
3. Rathore, R., 2023. A Study of bed occupancy management in the healthcare system using the M/M/C Queue and probability.
International Journal for Global Academic Scientific Research, 2(1), pp.01-06. DOI:
https://doi.org/10.55938/ijgasr.v2i1.36.
4. Bahadori, M., Teymourzadeh, E. and Kazemi, R., 2017. Mathematical modeling for bed allocation in a military hospital.
Journal of Military Medicine, 19(4), pp.390-399. DOI:
http://eprints.bmsu.ac.ir/id/eprint/211. [In Persian].
5. Xue, Q., Fan, Y., Wang, J., Kuang, Y. and Chen, Y., 2022. An Optimization Model and Computer Simulation for Allocation Planning of Hospital Bed Resources. Mathematical Problems in Engineering, 2022(1), pp.1-9 DOI: https://doi.org/10.1155/2022/3469641.
6. Pishnamazzadeh, M., Sepehri, M. M. and Ostadi, B., 2023. Inpatient bed management considering collaboration strategy to enhance hospital resilience.
Journal of Industrial Systems Engineering, 15(2), pp.1-19. DOI:
1001.1.17358272.2023.15.2.1.5.
7. Korzebor, M. and Nahavandi, N., 2024. A bed allocation model for pandemic situation considering general demand: A case study of Iran.
Risk Analysis, 44(11), pp.2660-2676. DOI:
https://doi.org/10.1111/risa.14339.
8. Hosseinzadeh, S., Ketabi, S., Atighehchian, A. and Nazari, R., 2024. Hospital bed capacity management during the COVID-19 outbreak using system dynamics: A case study in Amol public hospitals, Iran. International Journal of Healthcare Management, 17(1), pp.63-75. DOI: https://doi.org/10.1080/20479700.2022.2149083.
9. Yu, H., Shen, T., and Zhong, L., 2024. Optimizing hospital bed allocation for coordinated medical efficiency and quality improvement. Journal of Combinatorial Optimization, 48(4), 32-42. DOI: https://doi.org/10.1007/s10878-024-01210-1.
10. Li, Z., Yu, H. and Zhou, Z., 2024. Scheduling of elective operations with coordinated utilization of hospital beds and operating rooms. Journal of Combinatorial Optimization, 47(5), p.75.DOI: https://doi.org/10.1007/s10878-024-01167-1.
11. Azadeh, A., Sepahi, M., Haghighi, S. M. and Benchmarking, 2013. An integrated simulation-DEA approach to improve quality care of medical centres.
International Journal of Process Management, 3(3), pp.352-370. DOI:
https://doi.org/10.1504/IJPMB.2013.058160.
12. Wang, X., Gong, X., Geng, N., Jiang, Z. and Zhou, L., 2020. Metamodel-based simulation optimisation for bed allocation. International Journal of Production Research, 58(20), pp.6315-6335. DOI: https://doi.org/10.1080/00207543.2019.1677962.
13. He, L., Madathil, S. C., Oberoi, A., Servis, G. and Khasawneh, M., 2019. A systematic review of research design and modeling techniques in inpatient bed management. Computers Industrial Engineering, 127(1), pp.451-466 .DOI: https://doi.org/10.1016/j.cie.2018.10.033.
14. Wu, X., Xu, R., Li, J. and Khasawneh, M., 2019. A simulation study of bed allocation to reduce blocking probability in emergency departments: A case study in China. Journal of the Operational Research Society, 70(8), pp.1376-1390. DOI: https://doi.org/10.1080/01605682.2018.1506430.
15. Ghorbani, R., Shafagh, S. O., Nateghinia, S., Hajiesmaeli, M., Alibabaei, A. and Shafigh, N., 2021. Neuro-critical Care Unit Bed Allocation Optimization based on Hybrid Approach: Designing of Experiments and Simulation.
Journal of Safety Promotion and Injury Prevention, 1), pp.9-17. DOI:
https://doi.org/10.5812/archneurosci.64855 [In Persian].
16. Pourmahmoud, J. and Jafari, E., 2019. Goal programming for optimal allocation of hospital beds (case study: emergency department of Shahid Madani hospital in Tabriz).
Journal of Operational Research In Its Applications, 16(1), pp.131-141. DOI:
https://doi.org/10.33140/jcrr.02.01.01. [In Persian].
17. Torabipour, A., Zeraati, H., Mohammad, A., Rashidian, A., Sari, A. A. and Sarzaiem, M. R., 2016. Bed capacity planning using stochastic simulation approach in cardiac-surgery department of teaching hospitals, Tehran, Iran. Iranian Journal of Public Health, 45(9), p.1208. PMID: 27957466; PMCID: PMC5149475.
19. Hu, J., Hu, G., Cai, J., Xu, L. and Wang, Q., 2021. Hospital bed allocation strategy based on queuing theory during the covid-19 epidemic.
Computers, Materials & Continua, 66(1), pp.793-803. DOI:
https://doi.org/10.32604/cmc.2020.011110.
20. Vashishth, T. K., Chaudhary, S. and Sharma, V., Optimum Utilization of Bed Resources in Hospitals: A Stochastic Approach, in Artificial Intelligence-based Healthcare Systems: Springer, 2023, pp. 101-110. DOI: https://doi.org/10.1007/978-3-031-41925-6_7.
21. Burdett, R. L., Corry, P., Spratt, B., Cook, D. and Yarlagadda, P., 2023. A stochastic programming approach to perform hospital capacity assessments.
Plos One, 18(11), p.e0287980. DOI:
https://doi.org/10.1371/journal.pone.0287980
22. Burdett, R. L., Corry, P., Yarlagadda, P., Cook, D., Birgan, S. and McPhail, S. M., 2023. A mathematical framework for regional hospital case mix planning and capacity appraisal. Operations Research Perspectives, 10(1), p.100261. DOI: https://doi.org/10.1016/j.orp.2022.100261.
23. Naeini, M. K., Elahi, Z. and Esfandabadi, A. M., 2021. Providing a model for the optimal allocation of hospital beds based on Markov chain approach (case study: Shiraz-Shahid-Faghihi Hospital).
Quarterly Journal of Management Strategies in Health System, 6(1), pp.18-27. DOI:
https://doi.org/10.18502/mshsj.v6i1.6505. [In persian].
24. Taghavi, A. and Monem, 2018. Increasing the efficiency of using CCU beds of hospitals through optimization and combination of genetic algorithm and imperialist competitive.
Journal of Health and Biomedical Informatics, 4(4), pp.253-265. DOI:
http://jhbmi.ir/article-1-258-en.html. [In persian].
25. Belciug, S. and Gorunescu, F., 2016. A hybrid genetic algorithm-queuing multi-compartment model for optimizing inpatient bed occupancy and associated costs. Artificial Intelligence in Medicine, 68(1), pp.59-69. DOI: https://doi.org/10.1016/j.artmed.2016.03.001.
26. Bekker, R., Koole, G. and Roubos, D., 2017. Flexible bed allocations for hospital wards. Health Care Management Science, 20(1), pp.453-466. DOI: https://doi.org/10.1007/s10729-016-9364-4.
27. E Oliveira, B., De Vasconcelos, J., Almeida, J. and Pinto, L., 2020. A simulation-optimisation approach for hospital beds allocation. International Journal of Medical Informatics, 141(1), p.104174. DOI: https://doi.org/10.1016/j.ijmedinf.2020.104174.
28. Aghaabdellahian, Z. and Bijari, M., 2020. Bed management considering bed-blocking and elective patient admissions using simulation optimisation. International Journal of Simulation Process Modelling, 15(3), pp.278-294. DOI: https://doi.org/10.1504/IJSPM.2020.107330.
29. Mohamed, I. and Hussein, R., 2021. A simulation optimisation approach for managing bed capacity in an intensive care unit. Journal of Information Knowledge Management, 20(1), p.2150001. DOI: https://doi.org/10.1142/S0219649221500015.
30. Wan, F., Fondrevelle, J., Wang, T. and Duclos, A., 2023. Two-stage multi-objective optimization for ICU bed allocation under multiple sources of uncertainty. Scientific Reports, 13(1), p.18925. DOI: https://doi.org/10.1038/s41598-023-45777-x.
31. Wu, X., Li, J. and Chu, C.-H., 2019. Modeling multi-stage healthcare systems with service interactions under blocking for bed allocation. European Journal of Operational Research, 278(3), pp.927-941. DOI: https://doi.org/10.1016/j.ejor.2019.05.004.
32. Sundararajan, N. and Terkar, R., 2022. A roadmap to improving productivity in a fastener manufacturing unit by process optimization using ARENA. Materials Today: Proceedings, 62(1), pp.1017-1025. DOI: https://doi.org/10.1016/j.matpr.2022.04.265.
33. Bentalha, B., Hmioui, A. and Alla, L., The global performance of a service supply chain: a simulation-optimization under arena. In The Proceedings of the Third International Conference on Smart City Applications, pp. 489-502.Springer. DOI: https://doi.org/10.1007/978-3-030-66840-2_37.
34. Sridhar, P., Vishnu, C. and Sridharan, R., 2021. Simulation of inventory management systems in retail stores: A case study. Materials Today: Proceedings, 47(1), pp.5130-5134. DOI: https://doi.org/10.1016/j.matpr.2021.05.314.
35. Bakhsh, A., 2020. Traffic simulation modeling for major intersection. Sakarya University Journal of Science, 24(1), pp.37-44. DOI:https://doi.org/10.16984/saufenbilder.490984.
36. Tavakoli, M., Tavakkoli-Moghaddam, R., Mesbahi, R., Ghanavati-Nejad, M. and Tajally, A., 2022. Simulation of the COVID-19 patient flow and investigation of the future patient arrival using a time-series prediction model: a real-case study. Medical Biological Engineering Computing, 60(4), pp.969-990. DOI: https://doi.org/10.1007/s11517-022-02525-z.
37. Sasanfar, S., Bagherpour, M. and Moatari-Kazerouni, A., 2020. Improving emergency departments: Simulation-based optimization of patients waiting time and staff allocation in an Iranian hospital. International Journal of Healthcare Management, 14(4), pp.1449-1456. DOI:https://doi.org/10.1080/20479700.2020.1765121.
38. Hejazi, T.-H., 2021. State-dependent resource reallocation plan for health care systems: A simulation optimization approach, Computers Industrial Engineering, 159(1), pp.107-502. DOI: https://doi.org/10.1016/j.cie.2021.107502.
39. Najibi, S. M., Lotfi, F., Kharazmi, E., Farhadi, P., Shojaei, P., Bastani, P. and Kavosi, Z., 2023. Identification and prioritization of indicators of hospital bed allocation in Iran. World Medical Health Policy, 15(4), pp.356-379. DOI: https://doi.org/10.1002/wmh3.550.
40. Shieh, J.-I., Wu, H.-H. and Huang, K.-K., 2010. A DEMATEL method in identifying key success factors of hospital service quality. Knowledge-Based Systems, 23(3), 277-282. DOI: https://doi.org/10.1016/j.knosys.2010.01.013.
41. Si, S.-L., You, X.-Y., Liu, H.-C., Huang, J. and health, p., 2017. Identifying key performance indicators for holistic hospital management with a modified DEMATEL approach, International Journal of Environmental Research, 14(8), p.934. DOI: https://doi.org/10.3390/ijerph14080934.
42. Jiang, S., Shi, H., Lin, W. and Liu, H.-C., 2020. A large group linguistic Z-DEMATEL approach for identifying key performance indicators in hospital performance management. Applied Soft Computing, 86(1), p.105900. DOI: https://doi.org/10.1016/j.asoc.2019.105900.
43. Roy, , Adhikary, K., Kar, S. and Pamucar, D., 2018. A rough strength relational DEMATEL model for analysing the key success factors of hospital service quality. Decision Making: Applications in Management, 1(1), pp.121-142. DOI: https://doi.org/10.31181/dmame1801121r.
44. Zhou, Q., Huang, W. and Zhang, Y., 2011. Identifying critical success factors in emergency management using a fuzzy DEMATEL method. Safety science, 49(2), pp.243-252. DOI: https://doi.org/10.1016/j.ssci.2010.08.005.
45. Zhou, F., Wang, X., Lim, M. K., He, Y. and Li, L., 2018. Sustainable recycling partner selection using fuzzy DEMATEL-AEW-FVIKOR: A case study in small-and-medium enterprises (SMEs). Journal of Cleaner Production, 196(1), pp.489-504. DOI: https://doi.org/10.1016/j.jclepro.2018.05.247.