1. Lee, H. L. Lot sizing to reduce capacity utilization in a production process with defective items, process corrections, and rework. Manage. Sci. 38, 1314–1328 (1992).
2. Franca, R. B., Jones, E. C., Richards, C. N. & Carlson, J. P. Multi-objective stochastic supply chain modeling to evaluate tradeoffs between profit and quality. Int. J. Prod. Econ. 127, 292–299 (2010).
3. Mirzapour Al-E-Hashem, S. M. J., Malekly, H. & Aryanezhad, M. B. A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. Int. J. Prod. Econ. 134, 28–42 (2011).
4. Sarkar, B. Mathematical and analytical approach for the management of defective items in a multi-stage production system. J. Clean. Prod. 218, 896–919 (2019).
5. Slama, I., Ben-Ammar, O., Dolgui, A. & Masmoudi, F. New mixed integer approach to solve a multi-level capacitated disassembly lot-sizing problem with defective items and backlogging. J. Manuf. Syst. 56, 50–57 (2020).
6. Sarkar, B., Dey, B. K., Pareek, S. & Sarkar, M. A single-stage cleaner production system with random defective rate and remanufacturing. Comput. Ind. Eng. 150, 106861 (2020).
7. Tavan, E. & Sajjadi, S. M. Simultaneous selection of suppliers and an inventory policy of multi-product uncertain supply chains with simulation-based optimization approach. Sharif Ind. Eng. Manag. 36–1, 73–82 (2021).
8. Ghandehari, M. & Abdi, M. Development of a model for determining an integrated production-inventory policy in a two-echelon supply chain for perishable products with consideration discounts. Sharif Ind. Eng. Manag. 36–1, 63–76 (2021).
9. Mulvey, J. M., Vanderbei, R. J. & Zenios, S. A. Robust optimization of large-scale systems. Oper. Res. 43, 264–281 (1995).
10. Coello, C. A. C., Lamont, G. B. & Van Veldhuizen, D. A. Evolutionary algorithms for solving multi-objective problems. vol. 5 (Springer, 2007).
11. Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002).
12. Zitzler, E., Laumanns, M. & Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report 103, (2001).
13. Yen, G. G. & He, Z. Performance metric ensemble for multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 18, 131–144 (2013).
14. Behnamian, J., Ghomi, S. M. T. F. & Zandieh, M. A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic. Expert Syst. Appl. 36, 11057–11069 (2009).
15. Wu, C. F. J. & Hamada, M. S. Experiments: planning, analysis, and optimization. vol. 552 (John Wiley & Sons, 2011).