[1] Laarabi, H., Rachik, M., El Kahlaoui, O. & Labriji, E. H. 2013. Optimal vaccination strategies of an sir epidemic model with a saturated treatment. Universal Journal of Applied Mathematics, 1, 185-191.
https://doi.org/10.13189/ujam.2013.010305
[2] Tognotti, E. 2013. Lessons from the history of quarantine, from plague to influenza A. Emerging infectious diseases, 19, 254.
https://doi.org/10.1186/1471-2458-7-236
[3] Shamsi G, N., Ali Torabi, S. & Shakouri G, H. 2018. An option contract for vaccine procurement using the SIR epidemic model. European Journal of Operational Research, 267, 1122-1140. https://doi.org/10.1016/j.ejor.2017.12.013
[4] Waring, S. C. & Brown, B. J. 2005. The threat of communicable diseases following natural disasters: a public health response. Disaster Management & Response, 3, 41-47.
https://doi.org/10.1016/j.dmr.2005.02.003
[5] Gashaw, T., Hagos, B. and Sisay, M., 2021. Expected impacts of COVID-19: considering resource-limited countries and vulnerable population. Frontiers in Public Health, 9, p.614789. https://doi.org/10.3389/fpubh.2021.614789
[6] Li, Z., Chen, Q., Feng, L., Rodewald, L., Xia, Y., Yu, H., Zhang, R., An, Z., Yin, W. & Chen, W. 2020. Active case finding with case management: the key to tackling the COVID-19 pandemic. The Lancet.
https://doi.org/10.1016/S0140-6736(20)31278-2
[7] Straetemans, M., Buchholz, U., Reiter, S., Haas, W. & Krause, G. 2007. Prioritization strategies for pandemic influenza vaccine in 27 countries of the European Union and the Global Health Security Action Group: a review. BMC Public Health, 7, 236.
https://doi.org/10.1186/1471-2458-7-236
[8] Lee, B. Y., Brown, S. T., Korch, G. W., Cooley, P. C., Zimmerman, R. K., Wheaton, W. D., Zimmer, S. M., Grefenstette, J. J., Bailey, R. R. & Assi, T.-M. 2010. A computer simulation of vaccine prioritization, allocation, and rationing during the 2009 H1N1 influenza pandemic. Vaccine, 28, 4875-4879. https://doi.org/10.1016/j.vaccine.2010.05.002
[9] Imane, E., Jamal, B. & Abdelouahed, N. 2013. Dissemination of Epidemic for SIR Model. Journal of Applied Mathematical Sciences, 7, 6793-6800.
http://dx.doi.org/10.12988/ams.2013.310594
[10] Abbasimehr, H., Paki, R. & Bahrini, A. 2021. A novel approach based on combining deep learning models with statistical methods for COVID-19 time series forecasting. Neural Computing and Applications, 1-15.
https://doi.org/10.1007/s00521-021-06548-9
[11] Malmir, B., Amini, M. & Chang, S. I. 2017. A medical decision support system for disease diagnosis under uncertainty. Expert Systems with Applications, 88, 95-108.
https://doi.org/10.1016/j.eswa.2017.06.031
[12] Buckner, J. H., Chowell, G. & Springborn, M. R. 2020. Optimal dynamic prioritization of scarce COVID-19 vaccines. medRxiv. https://doi.org/10.1101/2020.09.22.20199174
[13] Zou, D., Wang, L., Xu, P., Chen, J., Zhang, W. & Gu, Q. 2020. Epidemic Model Guided Machine Learning for COVID-19 Forecasts in the United States. medRxiv, 2020.05.24.20111989 https://doi.org/10.1101/2020.05.24.20111989
[14] Choi, Y., Kim, J.-S., Kim, J.-E., Choi, H. & Lee, C.-H. 2021. Vaccination Prioritization Strategies for COVID-19 in Korea: A Mathematical Modeling Approach. International journal of environmental research and public health, 18,4240. https://doi.org/10.3390/ijerph18084240.
[15] Pal, D., Ghosh, D., Santra, P.K. and Mahapatra, G.S., 2022. Mathematical analysis of a COVID-19 epidemic model by using data driven epidemiological parameters of diseases spread in India. Biophysics, 67(2), pp.231-244. https://doi.org/10.1134/S0006350922020154
[16] Guerstein, S., Romeo-Aznar, V., Dekel, M. A., Miron, O., Davidovitch, N., Puzis, R. & Pilosof, S. 2020. Optimal strategies for combining vaccine prioritization and social distancing to reduce hospitalizations and mitigate COVID19 progression. medRxiv, 2020.12.22.20248622. https://doi.org/10.1101/2020.12.22.20248622
[17] Bardina, X., Ferrante, M. & Rovira, C. 2020. A stochastic epidemic model of COVID-19 disease. arXiv preprint arXiv:2005.02859.
https://doi.org/10.3934/math.2020490.
[18] Hussain, G., Khan, T., Khan, A., Inc, M., Zaman, G., Nisar, K. S. & Akgül, A. 2021. Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model. Alexandria Engineering Journal, 60, 4121-4130.
https://doi.org/10.1016/j.aej.2021.02.036
[19] Rihan, F. A., Alsakaji, H. J. & Rajivganthi, C. 2020. Stochastic SIRC epidemic model with time-delay for COVID-19. Advances in difference equations, 2020, 1-20.
https://doi.org/10.1186/s13662-020-02964-8
[20] GAMCHI, N. S., TORABI, S. A. & JOLAI, F. 2020. A novel vehicle routing problem for vaccine distribution using SIR epidemic model. OR Spectrum, 1-34.
https://doi.org/10.1007/s00291-020-00609-6
[21] Hezam, I. M., Nayeem, M. K., Foul, A. & Alrasheedi, A. F. 2021. COVID-19 Vaccine: A neutrosophic MCDM approach for determining the priority groups. Results in Physics, 20, 103654.
https://doi.org/10.1016/j.rinp.2020.103654
[22] Foy, B. H., Wahl, B., Mehta, K., Shet, A., Menon, G. I. & Britto, C. 2021. Comparing COVID-19 vaccine allocation strategies in India: A mathematical modelling study. International Journal of Infectious Diseases, 103, 431-438. https://doi.org/10.1016/j.ijid.2020.12.075
[23] Chapman, L. A. C., Shukla, P., Rodríguez-Barraquer, I., Shete, P. B., León, T. M., Bibbins-Domingo, K., Rutherford, G. W., Schechter, R. & Lo, N. C. 2021. Comparison of COVID-19 vaccine prioritization strategies. medRxiv, 2021.03.04.21251264. https://doi.org/10.1101/2021.03.04.21251264
[24] Ferranna, M., Cadarette, D. and Bloom, D.E., 2021. COVID-19 vaccine allocation: Modeling health outcomes and equity implications of alternative strategies. Engineering, 7(7), pp.924-935.
https://doi.org/10.1016/j.eng.2021.03.014
[25] Sharma, V.K. and Nigam, U., 2020. Modeling and forecasting of COVID-19 growth curve in India. Transactions of the Indian National Academy of Engineering, 5(4), pp.697-710.
https://doi.org/10.1007/s41403-020-00165-z
[26] Jewell, N. P., Lewnard, J. A. & Jewell, B. L. 2020. Predictive Mathematical Models of the COVID-19 Pandemic: Underlying Principles and Value of Projections. JAMA, 323, 1893-1894. https://doi.org/10.1001/jama.2020.6585
[27] Ndaïrou, F., Area, I., Nieto, J. J. & Torres, D. F. M. 2020. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Solitons & Fractals, 135, 109846. https://doi.org/10.1016/j.chaos.2020.109846
[28] Kohli, M., Maschio, M., Becker, D. & Weinstein, M. C. 2021. The potential public health and economic value of a hypothetical COVID-19 vaccine in the United States: Use of cost-effectiveness modeling to inform vaccination prioritization. Vaccine, 39, 1157-1164. https://doi.org/10.1016/j.vaccine.2020.12.078
[29] Kim, T. H., Johnstone, J. & Loeb, M. 2011. Vaccine herd effect. Scandinavian journal of infectious diseases, 43, 683-689.
https://doi.org/10.3109/00365548.2011.582247
[30] Brent, R. J. 2011. An implicit price of a DALY for use in a cost-benefit analysis of ARVs. Applied Economics, 43, 1413-1421. https://doi.org/10.1080/00036840802600475
[31] Neumann, P.J., Thorat, T., Zhong, Y., Anderson, J., Farquhar, M., Salem, M., Sandberg, E., Saret, C.J., Wilkinson, C. and Cohen, J.T., 2016. A systematic review of cost-effectiveness studies reporting cost-per-DALY averted. PLoS One, 11(12), p.e0168512. https://doi.org/10.1371/journal.pone.0168512
[32] Chen, L. & Sun, J. 2014. Optimal vaccination and treatment of an epidemic network model. Physics Letters A, 378, 3028-3036.
https://doi.org/10.1016/j.physleta.2014.09.002
[33] Iacoviello, D. & Stasio, N. 2013. Optimal control for SIRC epidemic outbreak. Computer methods and programs in biomedicine, 110, 333-342. https://doi.org/10.1016/j.cmpb.2013.01.006
[34] Van Den Driessche, P. & Watmough, J. 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical biosciences, 180, 29-48.
https://doi.org/10.1016/S0025-5564(02)00108-6
[35] Pontryagin, L. S. 1987. Mathematical theory of optimal processes, CRC press.
https://doi.org/10.1201/9780203749319
[36] Droit-Volet, S., Gil, S., Martinelli, N., Andant, N., Clinchamps, M., Parreira, L., Rouffiac, K., Dambrun, M., Huguet, P. & Dubuis, B. 2020. Time and Covid-19 stress in the lockdown situation: Time free,«Dying» of boredom and sadness. PloS one, 15, e0236465.
https://doi.org/10.1371/journal.pone.0236465