هماهنگی تأمین و توزیع اقلام امدادی لجستیک بشردوستانه براساس قرارداد انعطاف‌پذیری کمیت و برون‌سپاری: یک رویکرد برنامه‌ریزی تصادفی

نوع مقاله : پژوهشی

نویسندگان

دپارتمان مهندسی صنایع، دانشکده‌ی فنی و مهندسی، دانشگاه بوعلی سینا،همدان

چکیده

در این پژوهش، قرارداد انعطاف‌پذیری کمیت (Q‌F‌C)، با تعیین مقدارسفارش بین سازمان امداد و تولیدکننده داخلی، نوعی هماهنگی را برای مدیریت موجودی به‌وجود می‌آورد. اجزای زنجیره تأمین چند محصولی شامل؛ تولیدکننده داخلی، تامین کننده خارجی، سازمان امدادرسان و نقاط تقاضا (مناطق آسیب دیده) هستند. با توجه به قرار گرفتن در شرایط بحران، تقاضای مناطق آسیب دیده به‌صورت غیرقطعی در نظر گرفته شده است. اهداف مدل به‌صورت کمینه‌سازی هزینه‌های کل زنجیره و کل زمان‌ها تعریف شده است. برای حل مدل تصادفی عدد صحیح، برای اولین بار در این حوزه، از روش اپسیلون محدودیت تقویت شده استفاده شده است. به‌منظور صحه‌گذاری، تحلیل حساسیت‌های مختلفی ازانجام شده که صحت مدل ارائه شده را تأیید می‌نماید. نتایج بررسی‌ها نشان می‌دهد که مدل پیشنهادی، نسبت به تغییرات تقاضا، حساسیت بیشتری دارد، لذا ضروری است برنامه‌ریزان این حوزه نسبت به پارامتر تقاضا، دقت و توجه بیشتری داشته باشند.

کلیدواژه‌ها


[1] Abni, M. and Naisani Habib Abadi, M., 2021. The role of the humanitarian supply chain in crisis management. International Conference on New Challenges and Solutions in Industrial Engineering and Management, pp. 1-5. [In Persian]. [2] Abazari, S. R. Jolai, F. and Aghsami, A., 2022. Designing a humanitarian relief network considering governmental and non-governmental operations under uncertainty. International Journal of System Assurance Engineering and Management, 13(3), pp. 1430-1452. https://doi.org/10.1007/s13198-021-01488-y [3] Talai, Hajian, and Aghaei., 2022. The role of integration and coordination of efforts in the supply chain of humanitarian services (case study: Isfahan Red Crescent Society). Coaching in productivity management and development, 1(1), 46-58. [In Persian]. doi: 10.22034/jcmpd.2022.551115.1010 [4] Ali Doust, B. and Safari, H., 2020. multi-objective mathematical modeling of emergency drug supply chain (Case study: Earthquake crisis in Tehran). Industrial Management Perspectives, 10 (3), pp. 99-123. [In Persian]. https://doi.org/10.52547/jimp.10.3.99 [5] Patra, T. D. P. and Jha, J. K., 2022. Bidirectional option contract for prepositioning of relief supplies under demand uncertainty. Computers & Industrial Engineering, 163,107861. https://doi.org/10.1016/j.cie.2021.107861 [6] Asadkhani, J. Fallahi, A. and Mokhtari, H., 2022. A sustainable supply chain under VMI-CS agreement with withdrawal policies for imperfect items. Journal of Cleaner Production, 376, 134098. https://doi.org/10.1016/j.jclepro.2022.134098 [7] Chen, Y. Zhao, Q. Huang, K. and Xi, X., 2021. A Bi-objective optimization model for contract design of humanitarian relief goods procurement considering extreme disasters. Socio-Economic Planning Sciences, 101214. https://doi.org/10.1016/j.seps.2021.101214 [8] Nikkhoo, F. Bozorgi-Amiri, A. and Heydari, J., 2018. Coordination of relief items procurement in humanitarian logistic based on quantity flexibility contract. International Journal of Disaster Risk Reduction, 31, pp. 331-340. https://doi.org/10.1016/j.ijdrr.2018.05.024 [9] John, L. and Gurumurthy, A., 2021. Are quantity flexibility contracts with discounts in the presence of spot market procurement relevant for the humanitarian supply chain? An exploration. Annals of Operations Research, 315, pp. 1775-1802. https://doi.org/10.1007/s10479-021-04058-4 [10] Kim, G. and Wu, C. H., 2013. Scenario aggregation for supply chain quantity-flexibility contract. International journal of systems science, 44(11), pp. 2166-2182. https://doi.org/10.1080/00207721.2012.702237 [11] Kim, J. S. Park, S. I. and Shin, K. Y., 2014. A quantity flexibility contract model for a system with heterogeneous suppliers. Computers & operations research, 41, pp. 98-108. https://doi.org/10.1016/j.cor.2013.08.012 [12] Chan, F. T. and Chan, H. K., 2014. A simulation study with quantity flexibility in a supply chain subjected to uncertainties. International Journal of Computer Integrated Manufacturing, 19(2), pp. 148-160. https://doi.org/10.1080/09511920500324381 [13] Ebrahimi Nasab, Heydari, J., Taleizadeh, and A., 2017. Coordination of ordering and production policies in the two-level newspaper vendor model under quantitative flexibility contract. Journal of industrial engineering research in production systems, 4(8), pp. 119-131. [In Persian]. doi: 10.22084/IER.2017.1698 [14] Torabi, S. A., 2018. An option contract for vaccine procurement using the SIR epidemic model. European Journal of Operational Research, 267(3), pp. 1122-1140. https://doi.org/10.1016/j.ejor.2017.12.013 [15] Esmaeili-Najafabadi, E. Azad, N. Pourmohammadi, H. and Nezhad, M. S. F., 2021. Risk-averse outsourcing strategy in the presence of demand and supply uncertainties. Computers & Industrial Engineering, 151, 106906. https://doi.org/10.1016/j.cie.2020.106906 [16] Yao, X. Huang, R. Song, M. and Mishra, N., 2018. Pre-positioning inventory and service outsourcing of relief material supply chain. International Journal of Production Research, 56(21), pp. 6859-6871. https://doi.org/10.1080/00207543.2018.1495853 [17] Wang, X. Li, F. Liang, L. Huang, Z. and Ashley, A., 2015. Pre-purchasing with option contract and coordination in a relief supply chain. International Journal of Production Economics, 167, pp. 170-176. https://doi.org/10.1016/j.ijpe.2015.05.031 [18] El Mokrini, A. and Aouam, T., 2022. A decision-support tool for policy makers in healthcare supply chains to balance between perceived risk in logistics outsourcing and cost-efficiency. Expert Systems with Applications, 116999. https://doi.org/10.1016/j.eswa.2022.116999 [19] Chen, K., and Xiao, T., 2015. Outsourcing strategy and production disruption of supply chain with demand and capacity allocation uncertainties. International Journal of Production Economics, 170, pp. 243-257. https://doi.org/10.1016/j.ijpe.2015.09.028 [20] Heydari, J. Govindan, K. Nasab, H. R. E. and Taleizadeh, A. A., 2020. Coordination by quantity flexibility contract in a two-echelon supply chain system: Effect of outsourcing decisions. International Journal of Production Economics, 225, 107586. https://doi.org/10.1016/j.ijpe.2019.107586 [21] Tavakoli Moghaddam, R. Alinaghian, M. & Salamat Bakhsh, A., 2013. Presenting and Solving a New Mathematical Planning Model for Competitive Vehicle Routing: A Case Study. Journal of Transportation Research, 7(1), pp. 311-323 Book [22]. Azar, A. and Farrokh, M., 2017. Uncertainty planning: stochastic, fuzzy and stable approaches. Organization for the Study and Compilation of University Humanities Books (Position), Research Institute for Humanities Research and Development. Tehran. Chapter Two, pp. 80. [In Persian]. [23] Mavrotas, G. and Florios, K., 2013. An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems. Applied Mathematics and Computation, 219(18), pp. 9652-9669. https://doi.org/10.1016/j.amc.2013.03.002