FAO. (2016). Mediterra 2016: Zero waste in the Mediterranean. Natural Ressources, Food and Knowledge. Chapter 13: Consumer behaviour with respect to food losses and waste. Albisu, L. M. [1]
Azadbakht, N., Khosravinezhad, K., & Trahir, M.J. (2008). Evaluation of aflatoxin contamination of bread waste in Lorestan province. Yafte, 10, 87-96. [In Persian] [2]
Soleymani, M. & Omidi, H. (2013). Comparative study of the bread industry of Malaysia and Iran (with emphasis on the educational system). Business reviews. 11(59), 47-58. [In Persian] [3]
Javanbakht, H., Javanbakht, K., & Ansari, F. (2017). Effects of dry bread waste on environmental pollution. International Conference on New Ideas in Agriculture, Environment and Tourism, Ardabil. [In Persian] [4]
Pashaee, V., & Haghnazari, S. (2019). Effect of fermentation and infrared and traditional baking methods on reducing aflatoxin levels in Lavash bread. Food industry research, 29(1), 43-52. [In Persian] [5]
Karami, F., Omrani, Gh.A., Shoeybi, Sh., Tabaraei, B., Rahimifard, N., & Arjmandi, R. (2012). Investigation of fungal contamination of recycled bread waste in areas 6 and 7 of Tehran Municipality. Iranian Journal of Medical Microbiology, 6(3), 52-58. [In Persian] [6]
Azizi, M. H. (2002). Investigating strategies to reduce waste and improve bread quality. Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Institute of Nutritional Research and Food Industry. [In Persian] [7]
Linton, J. D., Klassen, R., & Jayaraman, V. (2007). Sustainable supply chains: An introduction. Journal of operations management, 25(6), 1075-1082. https://doi.org/10.1016/j.jom.2007.01.012
[8]
Izadpanah, N., Mohamadi, V., & Aghayarmakouee, N. (2018). A review of bread waste (the need to reduce bread waste to increase productivity. Eleventh International Conference on Accounting and Management and Eighth Conference on Entrepreneurship and Open Innovation. [In Persian] [9]
Winkler, H. (2011). Closed-loop production systems—A sustainable supply chain approach. CIRP Journal of Manufacturing Science and Technology, 4(3), 243-246. https://doi.org/10.1016/j.cirpj.2011.05.001
[10]
Vahdani, B., Razmi, J., & Tavakkoli-Moghaddam, R. (2012). Fuzzy possibilistic modeling for closed loop recycling collection networks. Environmental Modeling & Assessment, 17(6), 623-637. https://doi.org/10.1007/s10666-012-9313-7 [11]
Willows, R., Reynard, N., Meadowcroft, I., & Connell, R. (2003). Climate adaptation: Risk, uncertainty and decision-making. UKCIP Technical Report. UK Climate Impacts Programme. [12]
Mula, J., Poler, R., & Garcia-Sabater, J. P. (2007). Material Requirement Planning with fuzzy constraints and fuzzy coefficients. Fuzzy Sets and Systems, 158(7), 783-793. https://doi.org/10.1016/j.fss.2006.11.003
[13]
Uster [14]
Chouinard, M., D’Amours, S., & Aït-Kadi, D. (2008). A stochastic programming approach for designing supply loops. International Journal of Production Economics, 113(2), 657-677. https://doi.org/10.1016/j.ijpe.2007.10.023
[15]
Sabri, E. H., & Beamon, B. M. (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28(5), 581-598 https://doi.org/10.1016/j.apm.2010.07.013
[16]
Snyder, L. V. (2006). Facility location under uncertainty: a review. IIE Transactions, 38(7), 547-564. https://doi.org/10.1080/07408170500216480
[17]
Neto, J. Q. F., Bloemhof-Ruwaard, J. M., van Nunen, J. A., & van Heck, E. (2008). Designing and evaluating sustainable logistics networks. International Journal of Production Economics, 111(2), 195-208. https://doi.org/10.1016/j.ijpe.2006.10.014
[18]
Dehghanian, F., & Mansour, S. (2009). Designing sustainable recovery network of end-of-life products using genetic algorithm. Resources, Conservation and Recycling, 53(10), 559-570. https://doi.org/10.1016/j.resconrec.2009.04.007
[19]
Amin, S. H., Zhang, G., & Akhtar, P. (2017). Effects of uncertainty on a tire closed-loop supply chain network. Expert Systems with Applications, 73, 82-91. https://doi.org/10.1016/j.eswa.2016.12.024
[20]
Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations research, 43(2), 264-281. https://doi.org/10.1287/opre.43.2.264
[21]
Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35(2), 637-649. https://doi.org/10.1016/j.apm.2010.07.013
[22]
Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 89, 182-214. https://doi.org/10.1016/j.tre.2016.02.011
[23]
Lieckens, K., & Vandaele, N. (2007). Reverse logistics network design with stochastic lead times. Computers & Operations Research, 34(2), 395-416. https://doi.org/10.1016/j.cor.2005.03.006
[24]
d’Amore, F., & Bezzo, F. (2016). Strategic optimisation of biomass-based energy supply chains for sustainable mobility. Computers & Chemical Engineering, 87, 68-81. https://doi.org/10.1016/j.compchemeng.2016.01.003
[25]
Santibañez-Aguilar, J. E., Morales-Rodriguez, R., González-Campos, J. B., & Ponce-Ortega, J. M. (2016). Stochastic design of biorefinery supply chains considering economic and environmental objectives. Journal of cleaner production, 136, 224-245. https://doi.org/10.1016/j.jclepro.2016.03.168
[26]
Safaei, A. S., Roozbeh, A., & Paydar, M. M. (2017). A robust optimization model for the design of a cardboard closed-loop supply chain. Journal of Cleaner Production, 166, 1154-1168. https://doi.org/10.1016/j.jclepro.2017.08.085
[27]
Shahparvari, S., Chhetri, P., Chan, C., & Asefi, H. (2018). Modular recycling supply chain under uncertainty: a robust optimisation approach. The International Journal of Advanced Manufacturing Technology, 96(1-4), 915-934. https://doi.org/10.1007/s00170-017-1530-4 [28]
Shi, J., Liu, Z., Tang, L., & Xiong, J. (2017). Multi-objective optimization for a closed-loop network design problem using an improved genetic algorithm. Applied Mathematical Modelling, 45, 14-30. https://doi.org/10.1016/j.apm.2016.11.004
[29]
Hamidieh, A., Naderi, B., Mohammadi, M., & Fazli-Khalaf, M. (2017). A robust possibilistic programming model for a responsive closed loop supply chain network design. Cogent Mathematics, 4(1), 1329886. https://doi.org/10.1080/23311835.2017.1329886
[30]
Polo, A., Pena, ˜ N., Munoz, ˜ D., Can˜on, ´ A., & Escobar, J. W. (2019). Robust design of a closed-loop supply chain under uncertainty conditions integrating financial criteria. Omega, 88, 110–132. https://doi.org/10.1016/j.omega.2018.09.003
[31]
Pant, K., Yadav, V. S., & Singh, A. R. (2021). Design of multi-tier multi-time horizon closed-loop supply chain network with sustainability under uncertain environment for Indian paper industry. International Journal of Sustainable Engineering, 14(2), 107-122. https://doi.org/10.1080/19397038.2020.1774817
[32]
Jouzdani, J., & Govindan, K. (2021). On the sustainable perishable food supply chain network design: A dairy products case to achieve sustainable development goals. Journal of Cleaner Production, 278, Article 123060. https://doi.org/10.1016/j.jclepro.2020.123060
[33]
Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of operations research, 23(4), 769-805. https://doi.org/10.1287/moor.23.4.769
[34]
Soyster, A. (1973).” Convex programming with set-inclusive constraints and applications to inexact linear programming”, Operations Research. 21(5):1154-1157. https://doi.org/10.1287/opre.21.5.1154
[35]
Rahimi, E., Paydar, M. M., Mahdavi, I., Jouzdani, J., & Arabsheybani, A. (2018). A robust optimization model for multi-objective multi-period supply chain planning under uncertainty considering quantity discounts. Journal of Industrial and Production Engineering. https://doi.org/10.1080/21681015.2018.1441195
[36]
Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems, 1(1), 45-55. https://doi.org/10.1016/0165-0114(78)90031-3
[37]
Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(1), 3-28. https://doi.org/10.1016/0165-0114(78)90029-5
[38]
Werners, B. (1987). An interactive fuzzy programming system. Fuzzy sets and systems, 23(1), 131-147. https://doi.org/10.1016/0165-0114(87)90105-9
[39]
Selim, H., & Ozkarahan, I. (2008). A supply chain distribution network design model: an interactive fuzzy goal programming-based solution approach. The International Journal of Advanced Manufacturing Technology, 36(3), 401-418. https://doi.org/10.1007/s00170-006-0842-6 [40]
Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy sets and systems, 159(2), 193-214. https://doi.org/10.1016/j.fss.2007.08.010
[41]
Mirakhorli, A. (2014). Fuzzy multi-objective optimization for closed loop logistics network design in bread-producing industries. The International Journal of Advanced Manufacturing Technology, 70(1-4), 349-362. https://doi.org/10.1007/s00170-013-5264-7 [42]
Ho, J. C., & Wijeysundra, N. E., & Chou, S. K. (1986). Energy analysis applied to food processing. Pergamon Journals Ltd, 887-892. https://doi.org/10.1016/0360-5442(86)90008-3
[43]