1.Cavalcante, R., Brasileiro, R., Souza, V., Nobrega, J. and Oliveira, A., 2016. Computational intelligence and nancial markets: A survey and future directions. Expert Systems with Applications, 55,
https://doi.org/10.1016/j.eswa.2016.02.006.
2. Caldeira, J. and Moura, G., 2013. Selection of a portfolio of pairs based on cointegration: A statistical arbitrage strategy. Revista Brasileira de Financas, 11,
https://doi.org/10.2139/ssrn.2196391.
3. Krauss, C., Do, X. A. and Huck, N., 2017. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), pp.689-702.
https://doi.org/10.1016/j.ejor.2016.10.031.
5. Dunis, C., Giorgioni, G., Laws, J. and Rudy, J., 2010. Statistical arbitrage and high-frequency data with an
application to eurostoxx 50 equities. SSRN Electronic Journal,
https://doi.org/10.2139/ssrn.2272605.
7. Gatev, E., Goetzmann, W.N. and Rouwenhorst, K.G., 2006. Pairs trading: Performance of a relative-value arbitrage rule. The Review of Financial Studies, 19(3),pp.797-827.
https://doi.org/10.1093/rfs/hhj020.
13. Gupta, K. and Chatterjee, N., 2020. Selecting stock pairs for pairs trading while incorporating lead-lag relationship. Physica A: Statistical Mechanics and its Applications, 551, p.124103. https://doi.org/10.1016/j.physa.2019.124103.
15. Dunis, C., Laws, J., Evans, B. and John, L., 2006. Modelling and trading the soybean-oil crush spread with recurrent and higher order networks: A comparative analysis. Neural Network World, 16,
https://doi.org/10.4018/978-1-59904-897-0.ch016.
16. Dunis, C.L., Laws, J., Middleton, P.W. and Karathanasopoulos, A., 2015. Trading and hedging the corn/ethanol crush spread using timevarying leverage and nonlinear models. The European Journal of Finance, 21(4), pp.352-375.
https://doi.org/10.1080/1351847X.2013.830140.
22. Kim, T. and Kim, H. Y., 2019. Optimizing the PairsTrading strategy using deep reinforcement learning with
trading and stop-loss boundaries. Complexity, 2019,3582516.
https://doi.org/10.1155/2019/3582516.
23. Lu, J.Y., Lai, H.C., Shih, W.Y., Chen, Y.F., Huang, S.H., Chang, H.H. and Dai, T.S., 2022. Structural break-aware pairs trading strategy using deep reinforcement learning. The Journal of Supercomputing, 78(3), pp.3843-3882.
https://doi.org/10.1007/s11227-021-04013-x.
27. Lin, T.Y., Chen, C.W.S. and Syu, F.Y., 2021. Multi-asset pair-trading strategy: A statistical learning approach. The North American Journal of Economics and Finance, 55, p.101295.
https://doi.org/10.1016/j.najef.2020.101295.
28. Huang, C.F., Hsu, C.J., Chen, C.C., Chang, B.R. and Li, C.A., 2015. An intelligent model for Pairs Trading using genetic algorithms. Computational Intelligence and Neuroscience, 2015, 939606.
https://doi.org/10.1155/2015/939606.
30. Berkhin, P., 2006. A Survey of Clustering data Mining Techniques. In J. Kogan, C. Nicholas, & M. Teboulle
(Eds.), Grouping Multidimensional Data: Recent Advances in Clustering (pp. 25-71). Springer Berlin Heidelberg.
https://doi.org/10.1007/3-540-28349-8-2.