تعیین ترکیب تولید در محیط‌های دارای چند محدودیت با درنظرگرفتن اولویت گلوگاه‌ها

نوع مقاله : پژوهشی

نویسنده

گروه مهندسی صنایع، دانشگاه کوثر بجنورد، بجنورد، ایران.

چکیده

یکی از مسائلی که در خطوط تولیدی بررسی می‌شود، تعیین ترکیب تولید با توجه به منابع و محدودیت‌های تقاضاست. تئوری محدودیت‌ها، فلسفه‌‌یی است که در تعیین ترکیب تولید با توجه به محدودیت سیستم، تعیین‌کننده است. تئوری محدودیت‌ها در محیط‌هایی که یک محدودیت دارند، جواب بهینه می‌دهد؛ اما در سیستم‌های با محدودیت‌های بیشتر، احتمال نشدنی‌شدن جواب وجود دارد. در پژوهش حاضر، مسئله‌ی تعیین ترکیب تولید در محیط‌های با بیش از یک محدودیت با توجه به نظرهای تصمیم‌گیرنده بررسی شده است. برای اثبات کارایی مدل پیشنهادی، مثال‌های متنوعی با کمک برنامه‌ریزی آرمانی و نرم‌افزار winQSB حل شده است، که نتایج به‌دست‌آمده، کارایی مدل پیشنهادی را نشان می‌دهد؛ به طوری که حتی در محیط‌های با چند محدودیت نیز با لحاظ‌کردن هم‌زمان نظرهای تصمیم‌گیرنده در مورد اولویت گلوگاه به جواب بهینه می‌رسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the product mix in environments with multiple constraints, considering the priority of constraints

نویسنده [English]

  • Fahimeh Tanhaei
Industrial Engineering Department, Kosar University of Bojnord, Bojnord,
چکیده [English]

One of the problems in the production line is determining the product mix while paying attention to resources and customer demands. The theory of constraints is a philosophy that is decisive in determining the product mix according to the constraints of the system and the productivity of the system. This theory gives an optimal solution in environments with one constraint, but in systems with more constraints, the solution may become impossible. The present research examines the problem of determining the product mix in environments with more than one constraint. It is necessary to pay attention to the opinions of the decision maker regarding the priority of the bottlenecks in the environments with more constraints. Three states for the theory of constraints method are envisioned according to the number and type of bottlenecks: the first is the state where the system has only one bottleneck and the solution of the theory of constraints is identical to the optimal method of linear programming. The second is the case where the system has more than one bottleneck and the theory of constraints maintains its efficiency and produces an optimal solution. The third is the case where the system has more than one bottleneck and the theory of constraints produces an impossible solution. It is worth noting that in all the three cases considered for the theory of constraints, the opinions of the decision makers have been ignored, which is considered in the proposed method. To prove the efficiency of the proposed model, various examples have been solved with the help of goal programming and WinQSB software. The computation results and the processing time show the efficiency of the proposed model in reaching the optimal solution in environments with multiple constraints by considering the opinions of the decision maker.

کلیدواژه‌ها [English]

  • Theory of constraints
  • product mix
  • constraints
  • decision maker ideas
1.Dettmer, H.W., 1997. Goldratt's theory of constraints. Milwaukee: ASQ Quality Press.
2. Machado, M.P., Abreu, J.L., Morandi, M.I.M., Piran, F.S. and Lacerda, D.P., 2023. Exploratory decision robustness analysis of the theory of constraints focusing process using system dynamics modeling. International Journal of Production Economics, 260, pp.108856. DOI:10.1016/j.ijpe.2023.108856.
3. Lee, T.N. and Plenert, G., 1993. Optimizing theory of constraints when new product alternatives exist.
Production and Inventory Management Journal, 34(3), p.51.https://doi.org/10.1080/004565497195100.
4. Fredendall, L.D. and Lea, B.R., 1997. Improving the product mix heuristic in the theory of constraints. Internationa Journal of Production Research, 35(6), pp.1535-1544. https://doi.org/10.1080/002075497195100.
5. Badri, S.A., Ghazanfari, M. and Shahanaghi, K., 2014. A multi-criteria decision-making approach to solve the product mix problem with interval parameters based on the theory of constraints. The International Journal of Advanced Manufacturing Technology, 70, pp.1073-1080. https://doi.org/10.1080/00207540930005736.
6. Onwubolu, G.C., 2001. Tabu search-based algorithm for the TOC product mix decision. International Journal of Production Research, 39(10), pp.2065-2076. https://doi.org/10.1080/00207540010005736.
7. Mishra, N., Tiwari, M.K., Shankar, R. and Chan, F.T., 2005. Hybrid tabu-simulated annealing based approach to solve multi-constraint product mix decision problem. Expert Systems with Applications, 29(2), pp.446-454.
https://doi.org/10.1016/j.eswa.2005.04.044.
8. Komijan, A.R. and Sadjadi, S.J., 2005, May. Optimizing product mix in a multi-bottleneck environment using group decision-making approach. In International Conference on Computational Science and Its Applications, pp.388-396. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11424925_42.
9. Bhattacharya, A. and Vasant, P., 2007. Soft-sensing of level of satisfaction in TOC product-mix decision heuristic using robust fuzzy-LP. European Journal of Operational Research, 177(1), pp.55-70. https://doi.org/10.1016/j.ejor.2005.11.017.
10. Rezaie, K., Nazari-Shirkouhi, S. and Manouchehrabadi, B., 2009, December. Particle swarm optimization algorithm based approach to solve Theory of constraint product mix problem. In 2009 Second International Conference on
Developments in Systems Engineering, pp. 439-442. http://dx.doi.org/10.1109/DeSE.2009.18.
11. Zare, H., Kamali Saraji, M., Tavana, M., Streimikiene, D. and Cavallaro, F., 2021. An Integrated Fuzzy Goal Programming—Theory of Constraints Model for Production Planning and Optimization. Sustainability, 13(22), p.12728.
https://doi.org/10.3390/su132212728.
12. Ghazinoory, S., Sadeghian, R. and Samouei, P.,2010. Comparing of Utilizing “Theory of Constraints” Versus “Fuzzy Linear Programming” in Fuzzy Product-Mix Problems. International Journal of Industrial Engineering & Production
Management, 21(2), pp.1-10. https://doi.org/10.1019/j.ijpe.2020.16955.
13. de Jesus Pacheco, D.A., Junior, J.A.V.A. and de Matos, C.A., 2021. The constraints of theory: What is the impact of the Theory of Constraints on Operations Strategy? International Journal of Production Economics, 235, p.107955.
https://doi.org/10.1016/j.ijpe.2020.107955.
14. Kuo, T.C., Hsu, N.Y., Li, T.Y. and Chao, C.J., 2021. Industry 4.0 enabling manufacturing competitiveness: Delivery performance improvement based on theory of constraints. Journal of Manufacturing Systems, 60, pp.152-161.
https://doi.org/10.1016/j.jmsy.2021.05.009.
15. Okutmuş, E., Kahveci, A. and Kartašova, J., 2015. Using theory of constraints for reaching optimal product mix: An application in the furniture sector. Intellectual Economics, 9(2), pp.138-149. https://doi.org/10.1016/j.intele.2016.02.005.
16. Tanhaie, F. and Nahavandi, N., 2017. Solving product mix problem in multiple constraints environment using goal programming. Journal of Industrial Engineering and Management Studies, 4(1), pp.1-12. DOI:10.22116/JIEMS.2017.51960.
17. Hooshmand, A., Mehrazeen, A.R., Davoody, A.R. and Shorvarzi, M.R., 2019. Using Theory of Constraints in Production Management and Scheduling (A Case Study). Iranian Journal of Optimization, 11(2), pp.217-227.
https://doi.org/10.1016/j.ijpe.2020.107955.
18. Gulsen, A. and Saime, T., 2022. Determining the optimal product mix in multiple constraints manufacturing environment: an application in the textile industry. Industria Textila, 73(5), pp.564-573. doi: 10.35530/IT.073.05.202125.
19. Machado, M.P., Abreu, J.L., Morandi, M.I.M., Piran, F.S. and Lacerda, D.P., 2023. Exploratory decision robustness analysis of the theory of constraints focusing process using system dynamics modeling. International Journal of Production Economics, 260, p.108856. https://doi.org/10.1016/j.ijpe.2023.108856.
20. Du, L., Jin, S., Yang, Z., Sun, S., Yang, A. and Shen, W., 2023. An efficient multi-criteria decision making for assessing the optimization of reactive extractive distillation in terms of economy, environment and safety. Chemical Engineering
Research and Design, 197, pp.838-850.https://doi.org/10.1016/j.cherd.2023.08.033.
21. Tsai, W.H., Lu, Y.H. and Hsieh, C.L., 2022. Comparison of production decision-making models under carbon tax and carbon rights trading. Journal of Cleaner Production, 379, p.134462. https://doi.org/10.1016/j.jclepro.2022.134462