Araz, C. and Ozkarahan, I., 2007. Supplier evaluation and management system for strategic sourcing based
on a new multicriteria sorting procedure. International Journal of Production Economics, 106, pp. 585–606.
https://doi.org/10.1016/j.ijpe.2006.08.008.
2. Chen, C.T., Lin, C.T. and Huang, S.F., 2006. A fuzzy approach for supplier evaluation and selection in
supply chain management. International Journal of Production Economics. 102, pp. 289–301.
https://doi.org/10.1016/j.ijpe.2005.03.009.
3. Ghadimi, P., Wang, C., Lim, M.K. and Heavey, C.,2019. Intelligent sustainable supplier selection using multi-agent technology: Theory and application for Industry 4.0 supply chains. Computers & Industrial Engineering. 127, pp. 588-600.
https://doi.org/10.1016/j.cie.2018.10.050 .
4. Ahmad, I., Liu, Y., Javeed, D., Shamshad, N., Sarwr, D. and Ahmad, S., 2020. A review of artificial intelligence techniques for selection & evaluation. IOP Conf. Ser. Mater. Sci. Eng. 853.
https://doi.org/10.1088/1757-899X/853/1/012055.
5. Liou, J.J.H., Chang, M.H., Lo, H.W. and Hsu, M.H., 2021. Application of an MCDM model with data mining techniques for green supplier evaluation and selection. Applied Soft Computing, 109, 107534.
https://doi.org/10.1016/j.asoc.2021.107534.
6. Giri, B.C., Molla, M.U. and Biswas, P., 2022. Pythagorean fuzzy DEMATEL method for supplier selection in sustainable supply chain management. Expert Systems with Applications, 193, 116396.
https://doi.org/10.1016/j.eswa.2021.116396.
7. Ahmad, M.T., Firouz, M. and Mondal, S., 2022. Robust supplier-selection and order-allocation in two-echelon
supply networks: A parametric tolerance design approach. Computers & Industrial Engineering, 171, 108394.
https://doi.org/10.1016/j.cie.2022.108394.
8. Shang, Z., Yang, X., Barnes, D. and Wu, C., 2022. Supplier selection in sustainable supply chains: Using the integrated BWM, fuzzy Shannon entropy, and fuzzy MULTIMOORA methods. Expert Systems with Applications 195, 116567.
https://doi.org/10.1016/j.eswa.2022.116567.
9. Ishizaka, A., Khan, S.A., Kheybari, S. and Zaman, S.I., 2023. Supplier selection in closed loop pharma supply chain: a novel BWM–GAIA framework. Annals of Operations Research, 324, pp. 13–36.
https://doi.org/10.1007/s10479-022-04710-7.
10. Khazaei, M., Hajiaghaei-Keshteli, M., Rajabzadeh Ghatari, A., Ramezani, M., Fooladvand, A. and Azar, A., 2023. A multi-criteria supplier evaluation and selection model without reducing the level of optimality. Soft Computing, 27, pp. 17175–17188.
https://doi.org/10.1007/s00500-023-08954-8.
11. Kabadayi, N. and Dehghani mohammadabadi, M., 2022. Multi-objective supplier selection process: a simulation–optimization framework integrated with MCDM. Annals of Operations Research, 319, pp.1607–1629.
https://doi.org/10.1007/s10479-021-04424-2.
12. Saputro, T.E., Figueira, G. and Almada-Lobo, B., 2023. Hybrid MCDM and simulation-optimization for strategic supplier selection. Expert Systems with Applications, 219, 119624.
https://doi.org/10.1016/j.eswa.2023.119624.
13. Hajian Heidary, M., 2023. Risk Assessment in the Global Supplier Selection Considering Supply Disruption: A Simulation Optimization Approach. International Journal of Supply and Operations Management, 10, pp. 501–522.
https://doi.org/10.22034/IJSOM.2023.108989.2110.
14. Abdulla, A., Baryannis, G. and Badi, I., 2023. An integrated machine learning and MARCOS method for supplier evaluation and selection. Decision Analytics Journal, 9, 100342.
https://doi.org/10.1016/j.dajour.2023.100342.
15. Abouloifa, H. and Bahaj, M., 2023. Using Machine Learning Algorithms to Increase the Supplier Selection Process Efficiency in Supply Chain 4.0. In: Kacprzyk, J., Ezziyyani, M., Balas, V.E. (eds) International Conference on Advanced Intelligent Systems for Sustainable Development. Springer, Cham.
https://doi.org/10.1007/978-3-031-26384-2_19.
16. Cavalcante, I.M., Frazzon, E.M., Forcellini, F.A. and Ivanov, D., 2019. A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management,49, pp. 86–97.
https://doi.org/10.1016/j.ijinfomgt.2019.03.004.
17. Kumar, S., Dixit, A.K. and Akarte, M., 2023. In: Misra, R., et al. Advances in Data Science and Artificial Intelligence. ICDSAI 2022. Springer Proceedings in Mathematics & Statistics, 403. Springer, Cham. 403. https://doi.org/10.1007/978-3-031-16178-0_4.
18. Bodaghi, G., Jolai, F. and Rabbani, M., 2018. An integrated weighted fuzzy multi-objective model for supplier selection and order scheduling in a supply chain. International Journal of Production Research, 56, pp. 3590–3614.
https://doi.org/10.1080/00207543.2017.1400706.
19. Sharma, R., Shishodia, A., Gunasekaran, A., Min, H. and Munim, Z.H., 2022. The role of artificial intelligence in supply chain management: mapping the territory. International Journal of Production Research, 60, pp. 7527–7550.
https://doi.org/10.1080/00207543.2022.2029611.
20. Riahi, Y., Saikouk, T., Gunasekaran, A. and Badraoui, I., 2021. Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. Expert Systems with Applications,173, 114702.
https://doi.org/10.1016/j.eswa.2021.114702.
21. Ha, C., Jun, H.B. and Ok, C., 2018. A mathematical definition and basic structures for supply chain reliability: A procurement capability perspective. Computers & Industrial Engineering. 120, 334–345.
https://doi.org/10.1016/j.cie.2018.04.036