مکان‌یابی هاب با رویکرد پشتیبان‌گیری و لحاظ محدودیت ظرفیت تحت شرایط وقوع بحران

نوع مقاله : یادداشت فنی

نویسندگان

گروه مهندسی صنایع و سیستم‌ها، دانشگاه صنعتی اصفهان، اصفهان، ایران.

چکیده

طراحی شبکه‌ی هاب با عدم قطعیت‌هایی در تقاضا، هزینه‌ها، و قابلیت اطمینان مواجه است. بروز حوادث، کارایی تسهیلات هاب را متأثر می‌سازد و موجب تحمیل هزینه‌های اضافی می‌شود. در مطالعه‌ی حاضر، احتمال از دسترس خارج‌شدن هاب وجود دارد. به‌منظور تأمین تقاضای شبکه‌ی هاب، دو رویکرد پشتیبان‌گیری یگانه و چندگانه با امکان برقراری ارتباط مستقیم بین گره‌ها پیشنهاد شده است. برای حل راهبردهای‌های مذکور، مدل برنامه‌ریزی ریاضی ارائه شده و از آنجا که مسئله از نوع NP-hard بوده است، برای حل آن از رویکرد مبتنی بر الگوریتم ژنتیک استفاده شده است. جهت بررسی عملکرد الگوریتم‌ها، نمودهایی از مجموعه‌ی داده‌ی CAB حل شده است، که خطای پایین روش‌های پیشنهادی حاکی از عملکرد مطلوب آن‌هاست. حسب نتایج به‌دست‌آمده، افزایش جریان ورودی به هاب‌ پشتیبان در رویکرد پشتیبان‌گیری چندگانه‌، 18 الی 36 درصد کمتر از رویکرد یگانه در شرایط وقوع بحران بوده است. این روند مدیریت و تداوم عملیات در مواقع اضطراری را بیشتر تضمین می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hub Location with the Backup Approach by Considering the Capacity Constraint in Critical Situations

نویسندگان [English]

  • Hasan Ziarati
  • Ali Shahandeh Nookabadi
  • Mohammad Reisi-Nafchi
Department of Industrial &Systems Engineering, Isfahan University of Tech, Isfahan, Iran.
چکیده [English]

The efficient transportation of goods and passengers from origin to destination is a crucial aspect of supply chain management. The design of transportation systems plays a key role in determining system costs and customer satisfaction. In cases where direct communication between all points is not feasible, the hub and spoke system can be utilized. The design of the hub network is a strategic decision that faces uncertainties such as demand, costs, and system reliability. Natural and unnatural events can impact the efficiency of hub facilities, leading to additional costs for the system. Capacity limitations in hub facilities may necessitate crisis management strategies, such as transferring flows to backup hubs during emergencies. This study explores the use of single backup and multiple backup approaches to address hub unavailability and meet demand requirements. A mathematical model is presented to investigate and solve the single and multiple backup strategies. Due to the complexity of the problem, a genetic algorithm approach is employed for optimization. The performance of the algorithms is evaluated using the CAB dataset, demonstrating the effectiveness of the proposed solutions. Comparing the results of single backup and multiple backup strategies reveals that the latter is more advantageous in terms of system costs and congestion in hub nodes. This study highlights the importance of strategic planning in transportation systems and the benefits of implementing backup solutions to ensure efficient operations. This research underscores the critical role that transportation systems play in the overall success of supply chains and the significant impact that effective logistics management can have on customer satisfaction and operational costs. The strategic decisions made in designing transportation networks can have far-reaching implications on the overall efficiency and reliability of the system. By exploring different backup strategies and utilizing a mathematical model, organizations can better prepare for disruptions and ensure continuity of operations. The use of genetic algorithms and data analysis tools can provide valuable insights into the performance of transportation systems and help identify opportunities for improvement. Overall, this study emphasizes the importance of proactive planning and the adoption of innovative solutions in the field of logistics and transportation management.

کلیدواژه‌ها [English]

  • Hub location
  • backup hub
  • capacity constraint
  • direct link
  • genetic algorithm
1. Tan, P.Z. and Kara, B.Y., 2006. A hub covering model for cargo delivery systems. Networks, 49(1), pp.28–39. doi: https://doi.org/10.1002/net.20139
2. ZALUBOWSKI, D. 2021. Airlines cancel more flights after 8,000 were scrapped over Christmas weekend. https://www.euronews.com/embed/1781164 [Online].
3. Naderali. and Nookabadi, A. S., 2015. A multi-objective maximal covering hub location problem which minimizes the total distance, number of vehicles and servers used by each hub. Isfahan University of Technology [In persian].
4. O’kelly, M.E., 1987. A quadratic integer program for the location of interacting hub facilities. European Journal of Operational Research, 32(3), pp.393–404. doi: https://doi.org/10.1016/S0377-2217(87)80007-3
5. Ernst, A.T. and Krishnamoorthy, M., 1996. Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Science, 4(3), pp.139–154. doi: https://doi.org/10.1016/S0966-8349(96)00011-3
6. Campbell, J.F. 1994., Integer programming formulations of discrete hub location problems. European Journal of Operational Research, 72(2), pp.387–405. doi: https://doi.org/10.1016/0377-2217(94)90318-2
7. Ebery, J., Krishnamoorthy, M., Ernst, A. and Boland, N., 2000. The capacitated multiple allocation hub location problem: Formulations and algorithms. European Journal of Operational Research, [online] 120(3), pp.614–631. doi: https://doi.org/10.1016/S0377-2217(98)00395-6
8. Meraklı, M. and Yaman, H., 2017. A capacitated hub location problem under hose demand uncertainty. Computers & Operations Research, 88, pp.58–70. doi: https://doi.org/10.1016/j.cor.2017.06.011
9. An, Y., Zhang, Y. and Zeng, B., 2015. The reliable hub-and-spoke design problem: Models and algorithms. Transportation Research Part B: Methodological, [online] 77, pp.103–122. doi: https://doi.org/10.1016/j.trb.2015.02.006
10. Snyder, L.V. and Daskin, M.S., 2005. Reliability models for facility location: The expected failure cost case. Transportation Science, 39(3), pp.400–416. doi: https://doi.org/10.1287/trsc.1040.0107
11. Cui, T., Ouyang, Y. and Shen, Z.-J.M., 2010. Reliable facility location design under the risk of disruptions. Operations Research, 58(4-part-1), pp.998–1011. doi: https://doi.org/10.1287/trsc.1040.0107
12. Kim, H. and O’Kelly, M.E., 2009. Reliable p-Hub location problems in telecommunication networks. Geographical Analysis, 41(3), pp.283–306. doi: https://doi.org/10.1111/j.1538-4632.2009.00755.x
13. Masoumzadeh, S., solimanpur, M. and kamran, M., 2016. A multi-objective fuzzy goal programming P-hub location and protection model with back-up hubs considering hubs establishment fixed costs. Scientia Iranica, 23(4), pp.1941–1951. doi: 10.24200/sci.2016.3939
14. Pasandideh, S.H.R., Niaki, S.T.A. and Sheikhi, M., 2015. A bi-objective hub maximal covering location problem considering time-dependent reliability and the second type of coverage. International Journal of Management Science and Engineering Management, 11(4), pp.195–202. doi: https://doi.org/10.1080/17509653.2015.1056265
15. Madani, S. R., Nookabadi, A. S. and Hejazi, S. R., 2018. A bi-objective, reliable single allocation p-hub maximal covering location problem: Mathematical formulation and solution approach. Journal of Air Transport Management, 68, 118-136. doi: https://doi.org/10.1016/j.jairtraman.2017.09.001
16. Mohammadi, M., Jula, P. and Tavakkoli-Moghaddam, R., 2019. Reliable single-allocation hub location problem with disruptions. Transportation Research Part E: Logistics and Transportation Review, 123, pp.90–120. doi: https://doi.org/10.1016/j.tre.2019.01.008
17. Yahyaei, M., Bashiri, M. and Randall, M., 2019. A model for a reliable single allocation hub network design under massive disruption. Applied Soft Computing, 82, p.105561. doi: https://doi.org/10.1016/j.asoc.2019.105561
18. Korani, E. and Eydi, A., 2021. Bi-level programming model and KKT penalty function solution approach for reliable hub location problem. Expert Systems with Applications, 184, p.115505. doi: https://doi.org/10.1016/j.eswa.2021.115505
19. Ziarati, H., Nookabadi, A. S. and Nafchi, M. R., 2020. Hub location with the backup approach by considering capacity constraint in critical situations. Isfahan University of Technology [In persian].
20. Sohn, J. and Park, S., 2000. The single allocation problem in the interacting three-hub, network. Networks, 35(1), pp.17–25. doi: https://doi.org/10.1002/(SICI)1097-0037(200001)35:1<17::AID-NET2>3.0.CO;2-N
21. Kara, B.Y. and Tansel, B.Ç., 2000. On the single-assignment p-hub center problem. European Journal of Operational Research, 125(3), pp.648–655. doi: https://doi.org/10.1016/S0377-2217(99)00274-X
22. Kara,B. and Tansel,B., 1998. On the allocation phase of the p-hub location problem, Department of Industrial Engineering, Bilkent University, Tech. Rep.